
BearSSL: SSL for all Things
Thomas Pornin

BSides Edinburgh, April 7th, 2017

Outline

• Why yet another SSL library?

• SSL attacks and defences

• Constant-time implementations

• Constrained RAM, streaming and buffering

• X.509 certificate validation

• Why SSL sucks and how to fix it

SSL

A family of protocols:
• Uses a reliable bidirectional transport for bytes (e.g.
TCP).

• Provides a secure bidirectional transport for bytes.

• Used in HTTPS, SMTP, FTPS, some VPN...

• Netscape: SSL 1.0, 2.0 and 3.0

• IETF: TLS 1.0, 1.1, 1.2 (draft 1.3)

We use “SSL” to designate SSL 3.0 to TLS 1.2.

SSLHandshake
Client Server

ClientHello -------->

ServerHello

Certificate*

ServerKeyExchange*

CertificateRequest*

<-------- ServerHelloDone

Certificate*

ClientKeyExchange

CertificateVerify*

[ChangeCipherSpec]

Finished -------->

[ChangeCipherSpec]

<-------- Finished

Application Data <-------> Application Data

Things

Unfulfilled Needs

An SSL/TLS library that:

• is correct and secure (TLS 1.2, modern crypto...);

• works with very little RAM;

• has a small ROM footprint;

• has no OS dependency;

• is compatible with an embedded C world.

BearSSL

• Written from scratch in C.

• State-machine API, streamed processing.

• No malloc().

• Should fit in about 25 kB RAM.

• Static linkingmodel, down to about20kBcode (min-
imal server).

BearSSL

Extra Goals

• Pluggable crypto (optimised, constant-time...).

• Clean documented structure, and comments.

• Reusable opensource.

• Support for many cipher suites and features.

• Should work well on big machines as well.

BearSSL

Secure Crypto

• RSA (up to 4096 bits).

• ECC (P-256, P-384, P-521, X25519).

• ChaCha20+Poly1305.

• AES/GCM and AES/CBC.

• Legacy support for SHA-1, 3DES.

SSL Attacks

SSL Attacks

Version Rollback

• Attacker forces client and server to negotiate a lower
version than what they both support.

• Requires the client to do something “stupid”.

• Modern protection: TLS_FALLBACK_SCSV

– Sent by client when downgrading.
– Allows server to detect undue downgrade.

SSL Attacks

RSA: Bleichenbacher Attack
RSA key exchange (encryption):

• m = 00 02 xx xx . . .xx 00 || pre-master

• z = me (mod n)

Decryption:

• m = zd (mod n)

• Check and remove padding.

SSL Attacks

RSA: Bleichenbacher Attack
Attacker sends carefully crafted, invalidmessages z and ex-
pects the server to respond differently when the padding is
valid.

Solution: when decryption fails, use a random value.

SSL Attacks
rsa_ssl_decrypt.c

x = core(data, sk);

x &= EQ(data[0], 0x00);

x &= EQ(data[1], 0x02);

for (u = 2; u < (len - 49); u ++) {

x &= NEQ(data[u], 0);

}

x &= EQ(data[len - 49], 0x00);

memmove(data, data + len - 48, 48);

return x;

ssl_hs_server.t0
x = (*ctx->policy_vtable)->do_keyx(

ctx->policy_vtable, epms, &len);

br_enc16be(epms, ctx->client_max_version);

br_hmac_drbg_generate(&ctx->eng.rng, rpms, sizeof rpms);

br_ccopy(x ^ 1, epms, rpms, sizeof rpms);

SSL Attacks

Forward Secrecy
If an attacker steals a server private key, he can decrypt past
recorded sessions.

Solution: use ephemeral keys for key exchange.

• Server generates new Diffie-Hellman key pair.

• Server signs its DH public key.

• Server “forgets” its DH private key after use.

SSL Attacks

Forward Secrecy
Some issues:

• Performance: TLS_ECDH_ECDSA requires onepoint
multiplication, TLS_ECDHE_ECDSA needs three.

• Larger code (ECDH and ECDSA).

• Extra ServerKeyExchange message.

SSL Attacks
Secure Renegotiation

SSL Attacks

Secure Renegotiation

SSL Attacks
Secure Renegotiation
Solution 1: Secure Renegotiation extension (RFC 5746)

• Extension inClientHello, distinguishes between first
handshake and subsequent handshakes.

• BearSSL refuses renegotiations without the exten-
sion.

Solution 2: reject all renegotiations

• Use flag BR_OPT_NO_RENEGOTIATION.

SSL Attacks

Bad (EC)DHE Parameters
DHE: server sends p, g and g s (mod p). Client responds
with gc (mod p). Shared secret is g sc (mod p).

ECDHE: server selects curveE, with generatorG, and sends
sG. Client responds with cG. Shared secret is scG.

SSL Attacks

Bad (EC)DHE Parameters

• Client cannot validate DHE parameters (e.g. p is
not prime, order of g has small divisors...).

• Client may send wrong values to obtain informa-
tion about server secret (if server reuses that secret):

– Low-order value not in the subgroup.

– Point not on the curve.

SSL Attacks
Bad (EC)DHE Parameters
Countermeasures in BearSSL:

• NoDHE support, only ECDHE.

• Only known, named curves.

• No secret reuse (ephemeral: we mean it).
• Validation of incoming curve points:

Y 2 = X3 + aX + b

(Overhead: about +0.5%)

SSL Attacks
Chosen-Plaintext and theWeb

SSL Attacks

CBCWoes

SSL Attacks

CBCWoes
POODLE: in SSL 3.0, padding bytes can have arbitrary
values. Attacker replaces last blockwith another encrypted
block to test an hypothesis on the last plaintext byte.

• Attacker injects someplaintext to “phase” record for
a full-length padding block.

• If peer does not mind, then last decrypted byte was
equal to 15.

Solution: don’t support SSL 3.0; use TLS 1.0+ only.

SSL Attacks

CBCWoes
Padding Oracle: attacker modifies the last two blocks and
tries to know whether the padding was correct (not the
MAC).

• Explicit error message (Vaudenay 2002).

• Timing (recomputation of HMAC).

• Lucky13: timing again (lengthofHMACsourcedata).

SSL Attacks

CBCWoes
Solution:

• Constant-time padding check.

• Always compute HMAC.

• Constant-timeHMAC computation (even with re-
gards to length of data).

• Report generic error, only at the end.

SSL Attacks
v = 0;

for (u = min_len; u < max_len; u ++) {

tmp1[v] |= MUX(GE(u, len_nomac) & LT(u, len_withmac),

buf[u], 0x00);

rot_count = MUX(EQ(u, len_nomac), v, rot_count);

if (++ v == cc->mac_len) {

v = 0;

}

}

/* ... */

for (i = 5; i >= 0; i --) {

uint32_t rc;

rc = (uint32_t)1 << i;

cond_rotate(rot_count >> i, tmp1, cc->mac_len, rc);

rot_count &= ~rc;

}

SSL Attacks

BEAST
In TLS 1.0, IV for next record is last block from previous
record.

• Attacker sends long request, observes IV x.

• Attacker sends plaintext x ⊕ y, observes E(y).

• This tests an hypothesis on y given E(y).

• Cookie recovery, byte by byte.

SSL Attacks
BEAST
Solution 1: use TLS 1.1+ (per-record random IV).

Solution 2: the 1/n − 1 split.
• When sending a recordwithnbytes, send two records
with 1 and n − 1 bytes, respectively.

• This reuses theHMAC output on first record as IV
randomization.

• Do this only for application data records (compati-
bility issues).

SSL Attacks

CRIME
Encryption hides contents but not length. Compression
makes length depend on contents.

Solution: don’t compress.

SSL Attacks

SWEET32
“Bad things” happen when you encrypt more than 2n/2
blocks with a block cipher with n-bit blocks.
SWEET32: encrypthundreds of gigabyteswith3DES.Col-
lisions reveal cookie elements.

Solution: don’t use 3DES if you can avoid it.

SSL Attacks

Weak Crypto is Weak

• “Export” cipher suites, with40-bit encryptionmeant
to be breakable (it works!).

• 512-bit RSA (FREAK).

• 512-bit DHE (Logjam).

Solution: don’t do that.

Constant-Time Cryptography

Constant-Time Cryptography

Timing attacks are side-channel attacks than canbe exploited
remotely (over a network).

• Algorithmic (conditional execution).

• Cache-based (lookup tables, code path).

• Non-constant-time opcodes.

Constant-Time Cryptography

Constant-Time RSA
Classical square-and-multiply leaks secret key information.

Solution 1: use randommasking.

r−1(mre)d = md (mod n)

Solution 2: alwaysmultiply, use a constant-time conditional
copy (BearSSL).

Constant-Time Cryptography

if (win_len > 1) {

uint64_t *base;

memset(t2, 0, mw62num * sizeof *t2);

base = t2 + mw62num;

for (u = 1; u < ((uint32_t)1 << k); u ++) {

uint64_t mask;

size_t v;

mask = -(uint64_t)EQ(u, bits);

for (v = 0; v < mw62num; v ++) {

t2[v] |= mask & base[v];

}

base += mw62num;

}

}

Constant-Time Cryptography

for (i = 0; i < k; i ++) {

montymul(t1, x, x, m, mw62num, m0i);

memcpy(x, t1, mw62num * sizeof *x);

}

montymul(t1, x, t2, m, mw62num, m0i);

mask1 = -(uint64_t)EQ(bits, 0);

mask2 = ~mask1;

for (u = 0; u < mw62num; u ++) {

x[u] = (mask1 & x[u]) | (mask2 & t1[u]);

}

Constant-Time Cryptography

Cache-Based Attacks

• Algorithmmakes secret-dependentmemory accesses,
that hit various cache lines.

• Attacker then times its own read accesses, that exer-
cise the same cache lines, and sees which have been
evicted.

• Canwork from another process or even another vir-
tual machine.

• Lab demonstrations against AES, RSA, ECC...

Constant-Time Cryptography

Cache-Based Attacks
Microarchitecture defence: extra accesses tohit other cache
lines.

• Fast and cheap.

• Fragile, can break on other hardware versions.

“True” constant-time: no secret-dependentmemory access.

• Also no secret-dependent conditional jump.

Constant-Time Cryptography

Bitslicing
(Re)discovered by Biham in 1997.

• Decompose algorithm into a circuit with boolean
operations.

• One data bit per variable.

• With 64-bit registers, compute 64 instances in par-
allel.

Constant-Time Cryptography

Bitslicing
Operation: XOR x with y (6-bit values), then rotate left
by 1 bit.

/* classical */ /* bitslice */

z = x ^ y; z1 = x0 ^ y0;

z = ((z << 1) & 31) z2 = x1 ^ y1;

| (z >> 5); z3 = x2 ^ y2;

z4 = x3 ^ y3;

z5 = x4 ^ y4;

z0 = x5 ^ y5;

Constant-Time Cryptography

Bitslicing
Advantages:

• Uses the full register width.

• Data routing (e.g. rotations) is free.

• Naturally constant-time.

Constant-Time Cryptography

Bitslicing
Disadvantages:

• Larger code.

• More RAM/register traffic (expensive on
non-multiscalar architectures).

• Lookup tables become complicated circuits.

• Copes poorly with non-parallel contexts (e.g. CBC
encryption).

Constant-Time Cryptography

Bitslicing
Mixed strategies: use bitslicing between similar operations
within a single algorithm instance (e.g. 16 identical S-boxes
in an AES round).

• Less total state, so a better fit in registers.

• Better at non-parallelism.

• Some routing is no longer free.

• In BearSSL: aes_ct, aes_ct64, des_ct

Constant-Time Cryptography

Tricky Opcodes

• Memory accesses and conditional jumps

• Integer divisions

• Shifts and rotations

• Multiplications

https://www.bearssl.org/ctmul.html

Streaming and Buffering

Streaming and Buffering

ClientHello
struct {

ProtocolVersion client_version;

Random random;

SessionID session_id;

CipherSuite cipher_suites<2..2^16-2>;

CompressionMethod compression_methods<1..2^8-1>;

select (extensions_present) {

case false:

struct {};

case true:

Extension extensions<0..2^16-1>;

};

} ClientHello;

Streaming and Buffering

X.509 Certificate
Certificate ::= SEQUENCE {

tbsCertificate TBSCertificate,

signatureAlgorithm AlgorithmIdentifier,

signatureValue BIT STRING }

TBSCertificate ::= SEQUENCE {

version [0] EXPLICIT Version DEFAULT v1,

serialNumber CertificateSerialNumber,

signature AlgorithmIdentifier,

issuer Name,

validity Validity,

subject Name,

subjectPublicKeyInfo SubjectPublicKeyInfo,

issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,

subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL,

extensions [3] EXPLICIT Extensions OPTIONAL

}

Streaming and Buffering

Buffering
Solution 1: buffering.

• Maximummessage / certificate size: 16 MB.

• In practice: several kilobytes.

• OpenSSL uses a maximum 64 kB buffer.

Streaming and Buffering

Callbacks
Solution 2: streaming with callbacks.

• Decode “on the fly”.

• Use callback functions to obtain new data.

• Typical of OOP languages (e.g. Java, C#).

• Blocking operations (needs threads).

• Uses more stack space.

Streaming and Buffering

Coroutines
Solution 3: run decoder in a coroutine.

• Decoder is “on the fly” in its own dedicated inter-
ruptible context.

• Libraryoffers state-machineAPI (push/pull network
and application data).

• Supports parallel runs (select() / poll()).

Problem: standard C does not support coroutines.

Streaming and Buffering

State-Machine API
unsigned char *br_ssl_engine_sendapp_buf(

const br_ssl_engine_context *cc, size_t *len);

void br_ssl_engine_sendapp_ack(br_ssl_engine_context *cc, size_t len);

unsigned char *br_ssl_engine_recvapp_buf(

const br_ssl_engine_context *cc, size_t *len);

void br_ssl_engine_recvapp_ack(br_ssl_engine_context *cc, size_t len);

unsigned char *br_ssl_engine_sendrec_buf(

const br_ssl_engine_context *cc, size_t *len);

void br_ssl_engine_sendrec_ack(br_ssl_engine_context *cc, size_t len);

unsigned char *br_ssl_engine_recvrec_buf(

const br_ssl_engine_context *cc, size_t *len);

void br_ssl_engine_recvrec_ack(br_ssl_engine_context *cc, size_t len);

Streaming and Buffering

T0
Standard C does not have coroutines.

• Can be done onmany architectures with a bit of in-
line assembly or dark tricks with longjmp().

• Not portable.

• Requires an extra stack (+4 kB).

Solution: create a new language.

Streaming and Buffering

T0

• Forth dialect, with very non-Forth features.

• Separate interpreter/compiler (written in C#).

• Runtime: interpreter loop (token-threaded code).

• General metaprogramming.

• Coroutines.

• Static stack usage analysis.

Streaming and Buffering
: process-alerts (-- bool)

0

begin has-input? while read8-native process-alert-byte or repeat

dup if 1 addr-shutdown_recv set8 then ;

: process-alert-byte (x -- bool)

addr-alert get8 case

0 of

dup 1 <> if drop 2 then

addr-alert set8 0

endof

1 of

0 addr-alert set8

dup 100 = if 256 + fail then

0=

endof

\ Fatal alert implies context termination.

drop 256 + fail

endcase ;

Streaming and Buffering

T0
Static analysis: compute stack depth at any point.

• Restriction on computing model (no recursion).

• Infers or verifies stack usage.

• No data type analysis (all values are 32-bit words).

[src/x509/asn1.t0]

[src/x509/x509_minimal.t0]

main: ds=17 rs=25

code length: 2778 byte(s)

data length: 286 byte(s)

total words: 200 (interpreted: 139)

Streaming and Buffering
: read-length (lim -- lim length)

read8

\ Lengths in 0x00..0x7F get encoded as a single byte.

dup 0x80 < if ret then

\ If the byte is 0x80 then this is an indefinite length, and we

\ do not support that.

0x80 - dup ifnot ERR_X509_INDEFINITE_LENGTH fail then

\ Masking out bit 7, this yields the number of bytes over which

\ the value is encoded. Since the total certicate length must

\ fit over 3 bytes (this is a consequence of SSL/TLS message

\ format), we can reject big lengths and keep the length in a

\ single integer.

{ n } 0

begin n 0 > while n 1- >n

dup 0x7FFFFF > if ERR_X509_INNER_TRUNC fail then

8 << swap read8 rot +

repeat ;

X.509 Certificates

X.509 Certificates

BearSSL has a pluggable support for X.509 certificate val-
idation:

• Input: the certificate chain fromthepeer (by chunks).

• Output: a public key, or an error code.

• Two provided implementations:

– br_x509_knownkey

– br_x509_minimal

X.509 Certificates

br_x509_knownkey

• Peer public key is already known.

• Certificate chain is ignored.

• Implements a security model close to SSH.

X.509 Certificates
br_x509_minimal

• Validates chain as sent (no path rebuilding).

• Stops on matching trust anchor (both CA and “di-
rect trust”).

• Checks:
– Subject/issuer DN equality.
– Expiration dates.
– Basic Constraints.
– Key Usage.

X.509 Certificates

br_x509_minimal

Name Extraction:

• Elements fromsubjectDNand fromSANextension.

• Normalisation to UTF-8.

• SAN: email address,DNSname,URI, and arbitrary
otherName (e.g. Microsoft’s UPN).

• Server name match: exact, and with a leading wild-
card.

X.509 Certificates

br_x509_minimal

Features NOT supported:

• Revocation (CRL, OCSP).

• Path building (AIA extension).

• Name constraints.

• Certificate policies.

(Unsupported critical extensions imply validation failure.)

SSL Sucks
Large Buffers

• Records may contain up to 16 kB of plaintext.

• Noclear half-duplex policy, so shared input/output
buffer may be difficult.

• Max Fragment Length (RFC 6066): unusable:

– Client-driven only.
– Same maximum length in both directions.
– Very few implementations support it.

SSL Sucks

Legacy Cruft

• Non-AEAD cipher suites.

• Cipher suites mix concepts (ECDH_RSA...).

• Forced buffering (hash function choice).

• Renegotiations.

• Asynchronous alerts, but synchronous closure.

SSL Sucks
Other Issues

• X.509.

• Length+value nested structures.

• Modern emphasis on theWeb:
– TLS 1.3 cookies, session tickets, new Certifi-
cate message structure.

– Enforced ECDHE.
– Non-streamable Ed25519 and Ed448 (in cer-
tificates).

SSL Sucks

Fixing SSL

SSL for the embedded world:

• Start with TLS 1.2, with AEAD cipher suites.

• Use known key model when possible.

• Normalise on SHA-256 only.

• Use smaller buffers on both sides.

In the long run: new protocol with easier encoding.

Questions?

