7e7f12f7e3ad911ef482ca24d3443741ad3361aa
[BearSSL] / src / ec / ec_c25519_m64.c
1 /*
2 * Copyright (c) 2018 Thomas Pornin <pornin@bolet.org>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining
5 * a copy of this software and associated documentation files (the
6 * "Software"), to deal in the Software without restriction, including
7 * without limitation the rights to use, copy, modify, merge, publish,
8 * distribute, sublicense, and/or sell copies of the Software, and to
9 * permit persons to whom the Software is furnished to do so, subject to
10 * the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be
13 * included in all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
19 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
20 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
21 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24
25 #include "inner.h"
26
27 #if BR_INT128 || BR_UMUL128
28
29 #if BR_UMUL128
30 #include <intrin.h>
31 #endif
32
33 static const unsigned char GEN[] = {
34 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
35 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
36 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
37 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
38 };
39
40 static const unsigned char ORDER[] = {
41 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
42 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
43 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
44 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
45 };
46
47 static const unsigned char *
48 api_generator(int curve, size_t *len)
49 {
50 (void)curve;
51 *len = 32;
52 return GEN;
53 }
54
55 static const unsigned char *
56 api_order(int curve, size_t *len)
57 {
58 (void)curve;
59 *len = 32;
60 return ORDER;
61 }
62
63 static size_t
64 api_xoff(int curve, size_t *len)
65 {
66 (void)curve;
67 *len = 32;
68 return 0;
69 }
70
71 /*
72 * A field element is encoded as four 64-bit integers, in basis 2^63.
73 * Operations return partially reduced values, which may range up to
74 * 2^255+37.
75 */
76
77 #define MASK63 (((uint64_t)1 << 63) - (uint64_t)1)
78
79 /*
80 * Swap two field elements, conditionally on a flag.
81 */
82 static inline void
83 f255_cswap(uint64_t *a, uint64_t *b, uint32_t ctl)
84 {
85 uint64_t m, w;
86
87 m = -(uint64_t)ctl;
88 w = m & (a[0] ^ b[0]); a[0] ^= w; b[0] ^= w;
89 w = m & (a[1] ^ b[1]); a[1] ^= w; b[1] ^= w;
90 w = m & (a[2] ^ b[2]); a[2] ^= w; b[2] ^= w;
91 w = m & (a[3] ^ b[3]); a[3] ^= w; b[3] ^= w;
92 }
93
94 /*
95 * Addition in the field.
96 */
97 static inline void
98 f255_add(uint64_t *d, const uint64_t *a, const uint64_t *b)
99 {
100 #if BR_INT128
101
102 uint64_t t0, t1, t2, t3, cc;
103 unsigned __int128 z;
104
105 z = (unsigned __int128)a[0] + (unsigned __int128)b[0];
106 t0 = (uint64_t)z;
107 z = (unsigned __int128)a[1] + (unsigned __int128)b[1] + (z >> 64);
108 t1 = (uint64_t)z;
109 z = (unsigned __int128)a[2] + (unsigned __int128)b[2] + (z >> 64);
110 t2 = (uint64_t)z;
111 z = (unsigned __int128)a[3] + (unsigned __int128)b[3] + (z >> 64);
112 t3 = (uint64_t)z & MASK63;
113 cc = (uint64_t)(z >> 63);
114
115 /*
116 * Since operands are at most 2^255+37, the sum is at most
117 * 2^256+74; thus, the carry cc is equal to 0, 1 or 2.
118 *
119 * We use: 2^255 = 19 mod p.
120 * Since we add 0, 19 or 38 to a value that fits on 255 bits,
121 * the result is at most 2^255+37.
122 */
123 z = (unsigned __int128)t0 + (unsigned __int128)(19 * cc);
124 d[0] = (uint64_t)z;
125 z = (unsigned __int128)t1 + (z >> 64);
126 d[1] = (uint64_t)z;
127 z = (unsigned __int128)t2 + (z >> 64);
128 d[2] = (uint64_t)z;
129 d[3] = t3 + (uint64_t)(z >> 64);
130
131 #elif BR_UMUL128
132
133 uint64_t t0, t1, t2, t3, cc;
134 unsigned char k;
135
136 k = _addcarry_u64(0, a[0], b[0], &t0);
137 k = _addcarry_u64(k, a[1], b[1], &t1);
138 k = _addcarry_u64(k, a[2], b[2], &t2);
139 k = _addcarry_u64(k, a[3], b[3], &t3);
140 cc = (k << 1) + (t3 >> 63);
141 t3 &= MASK63;
142
143 /*
144 * Since operands are at most 2^255+37, the sum is at most
145 * 2^256+74; thus, the carry cc is equal to 0, 1 or 2.
146 *
147 * We use: 2^255 = 19 mod p.
148 * Since we add 0, 19 or 38 to a value that fits on 255 bits,
149 * the result is at most 2^255+37.
150 */
151 k = _addcarry_u64(0, t0, 19 * cc, &d[0]);
152 k = _addcarry_u64(k, t1, 0, &d[1]);
153 k = _addcarry_u64(k, t2, 0, &d[2]);
154 (void)_addcarry_u64(k, t3, 0, &d[3]);
155
156 #endif
157 }
158
159 /*
160 * Subtraction.
161 * On input, limbs must fit on 60 bits each. On output, result is
162 * partially reduced, with max value 2^255+19456; moreover, all
163 * limbs will fit on 51 bits, except the low limb, which may have
164 * value up to 2^51+19455.
165 */
166 static inline void
167 f255_sub(uint64_t *d, const uint64_t *a, const uint64_t *b)
168 {
169 #if BR_INT128
170
171 /*
172 * We compute t = 2^256 - 38 + a - b, which is necessarily
173 * positive but lower than 2^256 + 2^255, since a <= 2^255 + 37
174 * and b <= 2^255 + 37. We then subtract 0, p or 2*p, depending
175 * on the two upper bits of t (bits 255 and 256).
176 */
177
178 uint64_t t0, t1, t2, t3, t4, cc;
179 unsigned __int128 z;
180
181 z = (unsigned __int128)a[0] - (unsigned __int128)b[0] - 38;
182 t0 = (uint64_t)z;
183 cc = -(uint64_t)(z >> 64);
184 z = (unsigned __int128)a[1] - (unsigned __int128)b[1]
185 - (unsigned __int128)cc;
186 t1 = (uint64_t)z;
187 cc = -(uint64_t)(z >> 64);
188 z = (unsigned __int128)a[2] - (unsigned __int128)b[2]
189 - (unsigned __int128)cc;
190 t2 = (uint64_t)z;
191 cc = -(uint64_t)(z >> 64);
192 z = (unsigned __int128)a[3] - (unsigned __int128)b[3]
193 - (unsigned __int128)cc;
194 t3 = (uint64_t)z;
195 t4 = 1 + (uint64_t)(z >> 64);
196
197 /*
198 * We have a 257-bit result. The two top bits can be 00, 01 or 10,
199 * but not 11 (value t <= 2^256 - 38 + 2^255 + 37 = 2^256 + 2^255 - 1).
200 * Therefore, we can truncate to 255 bits, and add 0, 19 or 38.
201 * This guarantees that the result is at most 2^255+37.
202 */
203 cc = (38 & -t4) + (19 & -(t3 >> 63));
204 t3 &= MASK63;
205 z = (unsigned __int128)t0 + (unsigned __int128)cc;
206 d[0] = (uint64_t)z;
207 z = (unsigned __int128)t1 + (z >> 64);
208 d[1] = (uint64_t)z;
209 z = (unsigned __int128)t2 + (z >> 64);
210 d[2] = (uint64_t)z;
211 d[3] = t3 + (uint64_t)(z >> 64);
212
213 #elif BR_UMUL128
214
215 /*
216 * We compute t = 2^256 - 38 + a - b, which is necessarily
217 * positive but lower than 2^256 + 2^255, since a <= 2^255 + 37
218 * and b <= 2^255 + 37. We then subtract 0, p or 2*p, depending
219 * on the two upper bits of t (bits 255 and 256).
220 */
221
222 uint64_t t0, t1, t2, t3, t4;
223 unsigned char k;
224
225 k = _subborrow_u64(0, a[0], b[0], &t0);
226 k = _subborrow_u64(k, a[1], b[1], &t1);
227 k = _subborrow_u64(k, a[2], b[2], &t2);
228 k = _subborrow_u64(k, a[3], b[3], &t3);
229 (void)_subborrow_u64(k, 1, 0, &t4);
230
231 k = _subborrow_u64(0, t0, 38, &t0);
232 k = _subborrow_u64(k, t1, 0, &t1);
233 k = _subborrow_u64(k, t2, 0, &t2);
234 k = _subborrow_u64(k, t3, 0, &t3);
235 (void)_subborrow_u64(k, t4, 0, &t4);
236
237 /*
238 * We have a 257-bit result. The two top bits can be 00, 01 or 10,
239 * but not 11 (value t <= 2^256 - 38 + 2^255 + 37 = 2^256 + 2^255 - 1).
240 * Therefore, we can truncate to 255 bits, and add 0, 19 or 38.
241 * This guarantees that the result is at most 2^255+37.
242 */
243 t4 = (38 & -t4) + (19 & -(t3 >> 63));
244 t3 &= MASK63;
245 k = _addcarry_u64(0, t0, t4, &d[0]);
246 k = _addcarry_u64(k, t1, 0, &d[1]);
247 k = _addcarry_u64(k, t2, 0, &d[2]);
248 (void)_addcarry_u64(k, t3, 0, &d[3]);
249
250 #endif
251 }
252
253 /*
254 * Multiplication.
255 */
256 static inline void
257 f255_mul(uint64_t *d, uint64_t *a, uint64_t *b)
258 {
259 #if BR_INT128
260
261 unsigned __int128 z;
262 uint64_t t0, t1, t2, t3, t4, t5, t6, t7, th;
263
264 /*
265 * Compute the product a*b over plain integers.
266 */
267 z = (unsigned __int128)a[0] * (unsigned __int128)b[0];
268 t0 = (uint64_t)z;
269 z = (unsigned __int128)a[0] * (unsigned __int128)b[1] + (z >> 64);
270 t1 = (uint64_t)z;
271 z = (unsigned __int128)a[0] * (unsigned __int128)b[2] + (z >> 64);
272 t2 = (uint64_t)z;
273 z = (unsigned __int128)a[0] * (unsigned __int128)b[3] + (z >> 64);
274 t3 = (uint64_t)z;
275 t4 = (uint64_t)(z >> 64);
276
277 z = (unsigned __int128)a[1] * (unsigned __int128)b[0]
278 + (unsigned __int128)t1;
279 t1 = (uint64_t)z;
280 z = (unsigned __int128)a[1] * (unsigned __int128)b[1]
281 + (unsigned __int128)t2 + (z >> 64);
282 t2 = (uint64_t)z;
283 z = (unsigned __int128)a[1] * (unsigned __int128)b[2]
284 + (unsigned __int128)t3 + (z >> 64);
285 t3 = (uint64_t)z;
286 z = (unsigned __int128)a[1] * (unsigned __int128)b[3]
287 + (unsigned __int128)t4 + (z >> 64);
288 t4 = (uint64_t)z;
289 t5 = (uint64_t)(z >> 64);
290
291 z = (unsigned __int128)a[2] * (unsigned __int128)b[0]
292 + (unsigned __int128)t2;
293 t2 = (uint64_t)z;
294 z = (unsigned __int128)a[2] * (unsigned __int128)b[1]
295 + (unsigned __int128)t3 + (z >> 64);
296 t3 = (uint64_t)z;
297 z = (unsigned __int128)a[2] * (unsigned __int128)b[2]
298 + (unsigned __int128)t4 + (z >> 64);
299 t4 = (uint64_t)z;
300 z = (unsigned __int128)a[2] * (unsigned __int128)b[3]
301 + (unsigned __int128)t5 + (z >> 64);
302 t5 = (uint64_t)z;
303 t6 = (uint64_t)(z >> 64);
304
305 z = (unsigned __int128)a[3] * (unsigned __int128)b[0]
306 + (unsigned __int128)t3;
307 t3 = (uint64_t)z;
308 z = (unsigned __int128)a[3] * (unsigned __int128)b[1]
309 + (unsigned __int128)t4 + (z >> 64);
310 t4 = (uint64_t)z;
311 z = (unsigned __int128)a[3] * (unsigned __int128)b[2]
312 + (unsigned __int128)t5 + (z >> 64);
313 t5 = (uint64_t)z;
314 z = (unsigned __int128)a[3] * (unsigned __int128)b[3]
315 + (unsigned __int128)t6 + (z >> 64);
316 t6 = (uint64_t)z;
317 t7 = (uint64_t)(z >> 64);
318
319 /*
320 * Modulo p, we have:
321 *
322 * 2^255 = 19
323 * 2^510 = 19*19 = 361
324 *
325 * We split the intermediate t into three parts, in basis
326 * 2^255. The low one will be in t0..t3; the middle one in t4..t7.
327 * The upper one can only be a single bit (th), since the
328 * multiplication operands are at most 2^255+37 each.
329 */
330 th = t7 >> 62;
331 t7 = ((t7 << 1) | (t6 >> 63)) & MASK63;
332 t6 = (t6 << 1) | (t5 >> 63);
333 t5 = (t5 << 1) | (t4 >> 63);
334 t4 = (t4 << 1) | (t3 >> 63);
335 t3 &= MASK63;
336
337 /*
338 * Multiply the middle part (t4..t7) by 19. We truncate it to
339 * 255 bits; the extra bits will go along with th.
340 */
341 z = (unsigned __int128)t4 * 19;
342 t4 = (uint64_t)z;
343 z = (unsigned __int128)t5 * 19 + (z >> 64);
344 t5 = (uint64_t)z;
345 z = (unsigned __int128)t6 * 19 + (z >> 64);
346 t6 = (uint64_t)z;
347 z = (unsigned __int128)t7 * 19 + (z >> 64);
348 t7 = (uint64_t)z & MASK63;
349
350 th = (361 & -th) + (19 * (uint64_t)(z >> 63));
351
352 /*
353 * Add elements together.
354 * At this point:
355 * t0..t3 fits on 255 bits.
356 * t4..t7 fits on 255 bits.
357 * th <= 361 + 342 = 703.
358 */
359 z = (unsigned __int128)t0 + (unsigned __int128)t4
360 + (unsigned __int128)th;
361 t0 = (uint64_t)z;
362 z = (unsigned __int128)t1 + (unsigned __int128)t5 + (z >> 64);
363 t1 = (uint64_t)z;
364 z = (unsigned __int128)t2 + (unsigned __int128)t6 + (z >> 64);
365 t2 = (uint64_t)z;
366 z = (unsigned __int128)t3 + (unsigned __int128)t7 + (z >> 64);
367 t3 = (uint64_t)z & MASK63;
368 th = (uint64_t)(z >> 63);
369
370 /*
371 * Since the sum is at most 2^256 + 703, the two upper bits, in th,
372 * can only have value 0, 1 or 2. We just add th*19, which
373 * guarantees a result of at most 2^255+37.
374 */
375 z = (unsigned __int128)t0 + (19 * th);
376 d[0] = (uint64_t)z;
377 z = (unsigned __int128)t1 + (z >> 64);
378 d[1] = (uint64_t)z;
379 z = (unsigned __int128)t2 + (z >> 64);
380 d[2] = (uint64_t)z;
381 d[3] = t3 + (uint64_t)(z >> 64);
382
383 #elif BR_UMUL128
384
385 uint64_t t0, t1, t2, t3, t4, t5, t6, t7, th;
386 uint64_t h0, h1, h2, h3;
387 unsigned char k;
388
389 /*
390 * Compute the product a*b over plain integers.
391 */
392 t0 = _umul128(a[0], b[0], &h0);
393 t1 = _umul128(a[0], b[1], &h1);
394 k = _addcarry_u64(0, t1, h0, &t1);
395 t2 = _umul128(a[0], b[2], &h2);
396 k = _addcarry_u64(k, t2, h1, &t2);
397 t3 = _umul128(a[0], b[3], &h3);
398 k = _addcarry_u64(k, t3, h2, &t3);
399 (void)_addcarry_u64(k, h3, 0, &t4);
400
401 k = _addcarry_u64(0, _umul128(a[1], b[0], &h0), t1, &t1);
402 k = _addcarry_u64(k, _umul128(a[1], b[1], &h1), t2, &t2);
403 k = _addcarry_u64(k, _umul128(a[1], b[2], &h2), t3, &t3);
404 k = _addcarry_u64(k, _umul128(a[1], b[3], &h3), t4, &t4);
405 t5 = k;
406 k = _addcarry_u64(0, t2, h0, &t2);
407 k = _addcarry_u64(k, t3, h1, &t3);
408 k = _addcarry_u64(k, t4, h2, &t4);
409 (void)_addcarry_u64(k, t5, h3, &t5);
410
411 k = _addcarry_u64(0, _umul128(a[2], b[0], &h0), t2, &t2);
412 k = _addcarry_u64(k, _umul128(a[2], b[1], &h1), t3, &t3);
413 k = _addcarry_u64(k, _umul128(a[2], b[2], &h2), t4, &t4);
414 k = _addcarry_u64(k, _umul128(a[2], b[3], &h3), t5, &t5);
415 t6 = k;
416 k = _addcarry_u64(0, t3, h0, &t3);
417 k = _addcarry_u64(k, t4, h1, &t4);
418 k = _addcarry_u64(k, t5, h2, &t5);
419 (void)_addcarry_u64(k, t6, h3, &t6);
420
421 k = _addcarry_u64(0, _umul128(a[3], b[0], &h0), t3, &t3);
422 k = _addcarry_u64(k, _umul128(a[3], b[1], &h1), t4, &t4);
423 k = _addcarry_u64(k, _umul128(a[3], b[2], &h2), t5, &t5);
424 k = _addcarry_u64(k, _umul128(a[3], b[3], &h3), t6, &t6);
425 t7 = k;
426 k = _addcarry_u64(0, t4, h0, &t4);
427 k = _addcarry_u64(k, t5, h1, &t5);
428 k = _addcarry_u64(k, t6, h2, &t6);
429 (void)_addcarry_u64(k, t7, h3, &t7);
430
431 /*
432 * Modulo p, we have:
433 *
434 * 2^255 = 19
435 * 2^510 = 19*19 = 361
436 *
437 * We split the intermediate t into three parts, in basis
438 * 2^255. The low one will be in t0..t3; the middle one in t4..t7.
439 * The upper one can only be a single bit (th), since the
440 * multiplication operands are at most 2^255+37 each.
441 */
442 th = t7 >> 62;
443 t7 = ((t7 << 1) | (t6 >> 63)) & MASK63;
444 t6 = (t6 << 1) | (t5 >> 63);
445 t5 = (t5 << 1) | (t4 >> 63);
446 t4 = (t4 << 1) | (t3 >> 63);
447 t3 &= MASK63;
448
449 /*
450 * Multiply the middle part (t4..t7) by 19. We truncate it to
451 * 255 bits; the extra bits will go along with th.
452 */
453 t4 = _umul128(t4, 19, &h0);
454 t5 = _umul128(t5, 19, &h1);
455 t6 = _umul128(t6, 19, &h2);
456 t7 = _umul128(t7, 19, &h3);
457 k = _addcarry_u64(0, t5, h0, &t5);
458 k = _addcarry_u64(k, t6, h1, &t6);
459 k = _addcarry_u64(k, t7, h2, &t7);
460 (void)_addcarry_u64(k, h3, 0, &h3);
461 th = (361 & -th) + (19 * ((h3 << 1) + (t7 >> 63)));
462 t7 &= MASK63;
463
464 /*
465 * Add elements together.
466 * At this point:
467 * t0..t3 fits on 255 bits.
468 * t4..t7 fits on 255 bits.
469 * th <= 361 + 342 = 703.
470 */
471 k = _addcarry_u64(0, t0, t4, &t0);
472 k = _addcarry_u64(k, t1, t5, &t1);
473 k = _addcarry_u64(k, t2, t6, &t2);
474 k = _addcarry_u64(k, t3, t7, &t3);
475 t4 = k;
476 k = _addcarry_u64(0, t0, th, &t0);
477 k = _addcarry_u64(k, t1, 0, &t1);
478 k = _addcarry_u64(k, t2, 0, &t2);
479 k = _addcarry_u64(k, t3, 0, &t3);
480 (void)_addcarry_u64(k, t4, 0, &t4);
481
482 th = (t4 << 1) + (t3 >> 63);
483 t3 &= MASK63;
484
485 /*
486 * Since the sum is at most 2^256 + 703, the two upper bits, in th,
487 * can only have value 0, 1 or 2. We just add th*19, which
488 * guarantees a result of at most 2^255+37.
489 */
490 k = _addcarry_u64(0, t0, 19 * th, &d[0]);
491 k = _addcarry_u64(k, t1, 0, &d[1]);
492 k = _addcarry_u64(k, t2, 0, &d[2]);
493 (void)_addcarry_u64(k, t3, 0, &d[3]);
494
495 #endif
496 }
497
498 /*
499 * Multiplication by A24 = 121665.
500 */
501 static inline void
502 f255_mul_a24(uint64_t *d, const uint64_t *a)
503 {
504 #if BR_INT128
505
506 uint64_t t0, t1, t2, t3;
507 unsigned __int128 z;
508
509 z = (unsigned __int128)a[0] * 121665;
510 t0 = (uint64_t)z;
511 z = (unsigned __int128)a[1] * 121665 + (z >> 64);
512 t1 = (uint64_t)z;
513 z = (unsigned __int128)a[2] * 121665 + (z >> 64);
514 t2 = (uint64_t)z;
515 z = (unsigned __int128)a[3] * 121665 + (z >> 64);
516 t3 = (uint64_t)z & MASK63;
517
518 z = (unsigned __int128)t0 + (19 * (uint64_t)(z >> 63));
519 t0 = (uint64_t)z;
520 z = (unsigned __int128)t1 + (z >> 64);
521 t1 = (uint64_t)z;
522 z = (unsigned __int128)t2 + (z >> 64);
523 t2 = (uint64_t)z;
524 t3 = t3 + (uint64_t)(z >> 64);
525
526 z = (unsigned __int128)t0 + (19 & -(t3 >> 63));
527 d[0] = (uint64_t)z;
528 z = (unsigned __int128)t1 + (z >> 64);
529 d[1] = (uint64_t)z;
530 z = (unsigned __int128)t2 + (z >> 64);
531 d[2] = (uint64_t)z;
532 d[3] = (t3 & MASK63) + (uint64_t)(z >> 64);
533
534 #elif BR_UMUL128
535
536 uint64_t t0, t1, t2, t3, t4, h0, h1, h2, h3;
537 unsigned char k;
538
539 t0 = _umul128(a[0], 121665, &h0);
540 t1 = _umul128(a[1], 121665, &h1);
541 k = _addcarry_u64(0, t1, h0, &t1);
542 t2 = _umul128(a[2], 121665, &h2);
543 k = _addcarry_u64(k, t2, h1, &t2);
544 t3 = _umul128(a[3], 121665, &h3);
545 k = _addcarry_u64(k, t3, h2, &t3);
546 (void)_addcarry_u64(k, h3, 0, &t4);
547
548 t4 = (t4 << 1) + (t3 >> 63);
549 t3 &= MASK63;
550 k = _addcarry_u64(0, t0, 19 * t4, &t0);
551 k = _addcarry_u64(k, t1, 0, &t1);
552 k = _addcarry_u64(k, t2, 0, &t2);
553 (void)_addcarry_u64(k, t3, 0, &t3);
554
555 t4 = 19 & -(t3 >> 63);
556 t3 &= MASK63;
557 k = _addcarry_u64(0, t0, t4, &d[0]);
558 k = _addcarry_u64(k, t1, 0, &d[1]);
559 k = _addcarry_u64(k, t2, 0, &d[2]);
560 (void)_addcarry_u64(k, t3, 0, &d[3]);
561
562 #endif
563 }
564
565 /*
566 * Finalize reduction.
567 */
568 static inline void
569 f255_final_reduce(uint64_t *a)
570 {
571 #if BR_INT128
572
573 uint64_t t0, t1, t2, t3, m;
574 unsigned __int128 z;
575
576 /*
577 * We add 19. If the result (in t) is below 2^255, then a[]
578 * is already less than 2^255-19, thus already reduced.
579 * Otherwise, we subtract 2^255 from t[], in which case we
580 * have t = a - (2^255-19), and that's our result.
581 */
582 z = (unsigned __int128)a[0] + 19;
583 t0 = (uint64_t)z;
584 z = (unsigned __int128)a[1] + (z >> 64);
585 t1 = (uint64_t)z;
586 z = (unsigned __int128)a[2] + (z >> 64);
587 t2 = (uint64_t)z;
588 t3 = a[3] + (uint64_t)(z >> 64);
589
590 m = -(t3 >> 63);
591 t3 &= MASK63;
592 a[0] ^= m & (a[0] ^ t0);
593 a[1] ^= m & (a[1] ^ t1);
594 a[2] ^= m & (a[2] ^ t2);
595 a[3] ^= m & (a[3] ^ t3);
596
597 #elif BR_UMUL128
598
599 uint64_t t0, t1, t2, t3, m;
600 unsigned char k;
601
602 /*
603 * We add 19. If the result (in t) is below 2^255, then a[]
604 * is already less than 2^255-19, thus already reduced.
605 * Otherwise, we subtract 2^255 from t[], in which case we
606 * have t = a - (2^255-19), and that's our result.
607 */
608 k = _addcarry_u64(0, a[0], 19, &t0);
609 k = _addcarry_u64(k, a[1], 0, &t1);
610 k = _addcarry_u64(k, a[2], 0, &t2);
611 (void)_addcarry_u64(k, a[3], 0, &t3);
612
613 m = -(t3 >> 63);
614 t3 &= MASK63;
615 a[0] ^= m & (a[0] ^ t0);
616 a[1] ^= m & (a[1] ^ t1);
617 a[2] ^= m & (a[2] ^ t2);
618 a[3] ^= m & (a[3] ^ t3);
619
620 #endif
621 }
622
623 static uint32_t
624 api_mul(unsigned char *G, size_t Glen,
625 const unsigned char *kb, size_t kblen, int curve)
626 {
627 unsigned char k[32];
628 uint64_t x1[4], x2[4], z2[4], x3[4], z3[4];
629 uint32_t swap;
630 int i;
631
632 (void)curve;
633
634 /*
635 * Points are encoded over exactly 32 bytes. Multipliers must fit
636 * in 32 bytes as well.
637 */
638 if (Glen != 32 || kblen > 32) {
639 return 0;
640 }
641
642 /*
643 * RFC 7748 mandates that the high bit of the last point byte must
644 * be ignored/cleared.
645 */
646 x1[0] = br_dec64le(&G[ 0]);
647 x1[1] = br_dec64le(&G[ 8]);
648 x1[2] = br_dec64le(&G[16]);
649 x1[3] = br_dec64le(&G[24]) & MASK63;
650
651 /*
652 * We can use memset() to clear values, because exact-width types
653 * like uint64_t are guaranteed to have no padding bits or
654 * trap representations.
655 */
656 memset(x2, 0, sizeof x2);
657 x2[0] = 1;
658 memset(z2, 0, sizeof z2);
659 memcpy(x3, x1, sizeof x1);
660 memcpy(z3, x2, sizeof x2);
661
662 /*
663 * The multiplier is provided in big-endian notation, and
664 * possibly shorter than 32 bytes.
665 */
666 memset(k, 0, (sizeof k) - kblen);
667 memcpy(k + (sizeof k) - kblen, kb, kblen);
668 k[31] &= 0xF8;
669 k[0] &= 0x7F;
670 k[0] |= 0x40;
671
672 swap = 0;
673
674 for (i = 254; i >= 0; i --) {
675 uint64_t a[4], aa[4], b[4], bb[4], e[4];
676 uint64_t c[4], d[4], da[4], cb[4];
677 uint32_t kt;
678
679 kt = (k[31 - (i >> 3)] >> (i & 7)) & 1;
680 swap ^= kt;
681 f255_cswap(x2, x3, swap);
682 f255_cswap(z2, z3, swap);
683 swap = kt;
684
685 /* A = x_2 + z_2 */
686 f255_add(a, x2, z2);
687
688 /* AA = A^2 */
689 f255_mul(aa, a, a);
690
691 /* B = x_2 - z_2 */
692 f255_sub(b, x2, z2);
693
694 /* BB = B^2 */
695 f255_mul(bb, b, b);
696
697 /* E = AA - BB */
698 f255_sub(e, aa, bb);
699
700 /* C = x_3 + z_3 */
701 f255_add(c, x3, z3);
702
703 /* D = x_3 - z_3 */
704 f255_sub(d, x3, z3);
705
706 /* DA = D * A */
707 f255_mul(da, d, a);
708
709 /* CB = C * B */
710 f255_mul(cb, c, b);
711
712 /* x_3 = (DA + CB)^2 */
713 f255_add(x3, da, cb);
714 f255_mul(x3, x3, x3);
715
716 /* z_3 = x_1 * (DA - CB)^2 */
717 f255_sub(z3, da, cb);
718 f255_mul(z3, z3, z3);
719 f255_mul(z3, x1, z3);
720
721 /* x_2 = AA * BB */
722 f255_mul(x2, aa, bb);
723
724 /* z_2 = E * (AA + a24 * E) */
725 f255_mul_a24(z2, e);
726 f255_add(z2, aa, z2);
727 f255_mul(z2, e, z2);
728 }
729
730 f255_cswap(x2, x3, swap);
731 f255_cswap(z2, z3, swap);
732
733 /*
734 * Compute 1/z2 = z2^(p-2). Since p = 2^255-19, we can mutualize
735 * most non-squarings. We use x1 and x3, now useless, as temporaries.
736 */
737 memcpy(x1, z2, sizeof z2);
738 for (i = 0; i < 15; i ++) {
739 f255_mul(x1, x1, x1);
740 f255_mul(x1, x1, z2);
741 }
742 memcpy(x3, x1, sizeof x1);
743 for (i = 0; i < 14; i ++) {
744 int j;
745
746 for (j = 0; j < 16; j ++) {
747 f255_mul(x3, x3, x3);
748 }
749 f255_mul(x3, x3, x1);
750 }
751 for (i = 14; i >= 0; i --) {
752 f255_mul(x3, x3, x3);
753 if ((0xFFEB >> i) & 1) {
754 f255_mul(x3, z2, x3);
755 }
756 }
757
758 /*
759 * Compute x2/z2. We have 1/z2 in x3.
760 */
761 f255_mul(x2, x2, x3);
762 f255_final_reduce(x2);
763
764 /*
765 * Encode the final x2 value in little-endian.
766 */
767 br_enc64le(G, x2[0]);
768 br_enc64le(G + 8, x2[1]);
769 br_enc64le(G + 16, x2[2]);
770 br_enc64le(G + 24, x2[3]);
771 return 1;
772 }
773
774 static size_t
775 api_mulgen(unsigned char *R,
776 const unsigned char *x, size_t xlen, int curve)
777 {
778 const unsigned char *G;
779 size_t Glen;
780
781 G = api_generator(curve, &Glen);
782 memcpy(R, G, Glen);
783 api_mul(R, Glen, x, xlen, curve);
784 return Glen;
785 }
786
787 static uint32_t
788 api_muladd(unsigned char *A, const unsigned char *B, size_t len,
789 const unsigned char *x, size_t xlen,
790 const unsigned char *y, size_t ylen, int curve)
791 {
792 /*
793 * We don't implement this method, since it is used for ECDSA
794 * only, and there is no ECDSA over Curve25519 (which instead
795 * uses EdDSA).
796 */
797 (void)A;
798 (void)B;
799 (void)len;
800 (void)x;
801 (void)xlen;
802 (void)y;
803 (void)ylen;
804 (void)curve;
805 return 0;
806 }
807
808 /* see bearssl_ec.h */
809 const br_ec_impl br_ec_c25519_m64 = {
810 (uint32_t)0x20000000,
811 &api_generator,
812 &api_order,
813 &api_xoff,
814 &api_mul,
815 &api_mulgen,
816 &api_muladd
817 };
818
819 /* see bearssl_ec.h */
820 const br_ec_impl *
821 br_ec_c25519_m64_get(void)
822 {
823 return &br_ec_c25519_m64;
824 }
825
826 #else
827
828 /* see bearssl_ec.h */
829 const br_ec_impl *
830 br_ec_c25519_m64_get(void)
831 {
832 return 0;
833 }
834
835 #endif