Moved address-to-string translation code to blocks that depend on the 'verbose' flag.
[BearSSL] / src / ec / ecdsa_i31_vrfy_raw.c
1 /*
2 * Copyright (c) 2016 Thomas Pornin <pornin@bolet.org>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining
5 * a copy of this software and associated documentation files (the
6 * "Software"), to deal in the Software without restriction, including
7 * without limitation the rights to use, copy, modify, merge, publish,
8 * distribute, sublicense, and/or sell copies of the Software, and to
9 * permit persons to whom the Software is furnished to do so, subject to
10 * the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be
13 * included in all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
19 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
20 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
21 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24
25 #include "inner.h"
26
27 #define I31_LEN ((BR_MAX_EC_SIZE + 61) / 31)
28 #define POINT_LEN (1 + (((BR_MAX_EC_SIZE + 7) >> 3) << 1))
29
30 /* see bearssl_ec.h */
31 uint32_t
32 br_ecdsa_i31_vrfy_raw(const br_ec_impl *impl,
33 const void *hash, size_t hash_len,
34 const br_ec_public_key *pk,
35 const void *sig, size_t sig_len)
36 {
37 /*
38 * IMPORTANT: this code is fit only for curves with a prime
39 * order. This is needed so that modular reduction of the X
40 * coordinate of a point can be done with a simple subtraction.
41 */
42 const br_ec_curve_def *cd;
43 uint32_t n[I31_LEN], r[I31_LEN], s[I31_LEN], t1[I31_LEN], t2[I31_LEN];
44 unsigned char tx[(BR_MAX_EC_SIZE + 7) >> 3];
45 unsigned char ty[(BR_MAX_EC_SIZE + 7) >> 3];
46 unsigned char eU[POINT_LEN];
47 size_t nlen, rlen, ulen;
48 uint32_t n0i, res;
49
50 /*
51 * Get the curve parameters (generator and order).
52 */
53 switch (pk->curve) {
54 case BR_EC_secp256r1:
55 cd = &br_secp256r1;
56 break;
57 case BR_EC_secp384r1:
58 cd = &br_secp384r1;
59 break;
60 case BR_EC_secp521r1:
61 cd = &br_secp521r1;
62 break;
63 default:
64 return 0;
65 }
66
67 /*
68 * Signature length must be even.
69 */
70 if (sig_len & 1) {
71 return 0;
72 }
73 rlen = sig_len >> 1;
74
75 /*
76 * Public key point must have the proper size for this curve.
77 */
78 if (pk->qlen != cd->generator_len) {
79 return 0;
80 }
81
82 /*
83 * Get modulus; then decode the r and s values. They must be
84 * lower than the modulus, and s must not be null.
85 */
86 nlen = cd->order_len;
87 br_i31_decode(n, cd->order, nlen);
88 n0i = br_i31_ninv31(n[1]);
89 if (!br_i31_decode_mod(r, sig, rlen, n)) {
90 return 0;
91 }
92 if (!br_i31_decode_mod(s, (const unsigned char *)sig + rlen, rlen, n)) {
93 return 0;
94 }
95 if (br_i31_iszero(s)) {
96 return 0;
97 }
98
99 /*
100 * Invert s. We do that with a modular exponentiation; we use
101 * the fact that for all the curves we support, the least
102 * significant byte is not 0 or 1, so we can subtract 2 without
103 * any carry to process.
104 * We also want 1/s in Montgomery representation, which can be
105 * done by converting _from_ Montgomery representation before
106 * the inversion (because (1/s)*R = 1/(s/R)).
107 */
108 br_i31_from_monty(s, n, n0i);
109 memcpy(tx, cd->order, nlen);
110 tx[nlen - 1] -= 2;
111 br_i31_modpow(s, tx, nlen, n, n0i, t1, t2);
112
113 /*
114 * Truncate the hash to the modulus length (in bits) and reduce
115 * it modulo the curve order. The modular reduction can be done
116 * with a subtraction since the truncation already reduced the
117 * value to the modulus bit length.
118 */
119 br_ecdsa_i31_bits2int(t1, hash, hash_len, n[0]);
120 br_i31_sub(t1, n, br_i31_sub(t1, n, 0) ^ 1);
121
122 /*
123 * Multiply the (truncated, reduced) hash value with 1/s, result in
124 * t2, encoded in ty.
125 */
126 br_i31_montymul(t2, t1, s, n, n0i);
127 br_i31_encode(ty, nlen, t2);
128
129 /*
130 * Multiply r with 1/s, result in t1, encoded in tx.
131 */
132 br_i31_montymul(t1, r, s, n, n0i);
133 br_i31_encode(tx, nlen, t1);
134
135 /*
136 * Compute the point x*Q + y*G.
137 */
138 ulen = cd->generator_len;
139 memcpy(eU, pk->q, ulen);
140 res = impl->muladd(eU, cd->generator, ulen,
141 tx, nlen, ty, nlen, cd->curve);
142
143 /*
144 * Get the X coordinate, reduce modulo the curve order, and
145 * compare with the 'r' value.
146 *
147 * The modular reduction can be done with subtractions because
148 * we work with curves of prime order, so the curve order is
149 * close to the field order (Hasse's theorem).
150 */
151 br_i31_zero(t1, n[0]);
152 br_i31_decode(t1, &eU[1], ulen >> 1);
153 t1[0] = n[0];
154 br_i31_sub(t1, n, br_i31_sub(t1, n, 0) ^ 1);
155 res &= ~br_i31_sub(t1, r, 1);
156 res &= br_i31_iszero(t1);
157 return res;
158 }