X-Git-Url: https://www.bearssl.org/gitweb//home/git/?p=BearSSL;a=blobdiff_plain;f=src%2Fconfig.h;h=b06807b1c9a8dba45db10a5058c078c67c7e08b2;hp=5de3a5acf16611a602de0db7918afd1e795e7f38;hb=a52cff8309f48ca8487410cfa2a8fb6c11152e2b;hpb=21743ae69e609ec7ec157eaf0b54cfe4866b7ef2;ds=sidebyside diff --git a/src/config.h b/src/config.h index 5de3a5a..b06807b 100644 --- a/src/config.h +++ b/src/config.h @@ -41,6 +41,16 @@ #define BR_64 1 */ +/* + * When BR_LOMUL is enabled, then multiplications of 32-bit values whose + * result are truncated to the low 32 bits are assumed to be + * substantially more efficient than 32-bit multiplications that yield + * 64-bit results. This is typically the case on low-end ARM Cortex M + * systems (M0, M0+, M1, and arguably M3 and M4 as well). + * +#define BR_LOMUL 1 + */ + /* * When BR_SLOW_MUL is enabled, multiplications are assumed to be * substantially slow with regards to other integer operations, thus @@ -127,4 +137,82 @@ #define BR_USE_WIN32_TIME 1 */ +/* + * When BR_ARMEL_CORTEXM_GCC is enabled, some operations are replaced with + * inline assembly which is shorter and/or faster. This should be used + * only when all of the following are true: + * - target architecture is ARM in Thumb mode + * - target endianness is little-endian + * - compiler is GCC (or GCC-compatible for inline assembly syntax) + * + * This is meant for the low-end cores (Cortex M0, M0+, M1, M3). + * Note: if BR_LOMUL is not explicitly enabled or disabled, then + * enabling BR_ARMEL_CORTEXM_GCC also enables BR_LOMUL. + * +#define BR_ARMEL_CORTEXM_GCC 1 + */ + +/* + * When BR_AES_X86NI is enabled, the AES implementation using the x86 "NI" + * instructions (dedicated AES opcodes) will be compiled. If this is not + * enabled explicitly, then that AES implementation will be compiled only + * if a compatible compiler is detected. If set explicitly to 0, the + * implementation will not be compiled at all. + * +#define BR_AES_X86NI 1 + */ + +/* + * When BR_SSE2 is enabled, SSE2 intrinsics will be used for some + * algorithm implementations that use them (e.g. chacha20_sse2). If this + * is not enabled explicitly, then support for SSE2 intrinsics will be + * automatically detected. If set explicitly to 0, then SSE2 code will + * not be compiled at all. + * +#define BR_SSE2 1 + */ + +/* + * When BR_POWER8 is enabled, the AES implementation using the POWER ISA + * 2.07 opcodes (available on POWER8 processors and later) is compiled. + * If this is not enabled explicitly, then that implementation will be + * compiled only if a compatible compiler is detected, _and_ the target + * architecture is POWER8 or later. + * +#define BR_POWER8 1 + */ + +/* + * When BR_INT128 is enabled, then code using the 'unsigned __int64' + * and 'unsigned __int128' types will be used to leverage 64x64->128 + * unsigned multiplications. This should work with GCC and compatible + * compilers on 64-bit architectures. + * +#define BR_INT128 1 + */ + +/* + * When BR_UMUL128 is enabled, then code using the '_umul128()' and + * '_addcarry_u64()' intrinsics will be used to implement 64x64->128 + * unsigned multiplications. This should work on Visual C on x64 systems. + * +#define BR_UMUL128 1 + */ + +/* + * When BR_LE_UNALIGNED is enabled, then the current architecture is + * assumed to use little-endian encoding for integers, and to tolerate + * unaligned accesses with no or minimal time penalty. + * +#define BR_LE_UNALIGNED 1 + */ + +/* + * When BR_BE_UNALIGNED is enabled, then the current architecture is + * assumed to use little-endian encoding for integers, and to tolerate + * unaligned accesses with no or minimal time penalty. + * +#define BR_BE_UNALIGNED 1 + */ + #endif