X-Git-Url: https://www.bearssl.org/gitweb//home/git/?p=BearSSL;a=blobdiff_plain;f=src%2Fsymcipher%2Faes_x86ni_ctrcbc.c;fp=src%2Fsymcipher%2Faes_x86ni_ctrcbc.c;h=f57fead6858a1b7de132a6276d627c9c2d0e6713;hp=0000000000000000000000000000000000000000;hb=dddc412922f42f9c7dd6177133828be724f44424;hpb=8e94ad2fcb11794c559025277e56f3fbeb676f5d diff --git a/src/symcipher/aes_x86ni_ctrcbc.c b/src/symcipher/aes_x86ni_ctrcbc.c new file mode 100644 index 0000000..f57fead --- /dev/null +++ b/src/symcipher/aes_x86ni_ctrcbc.c @@ -0,0 +1,596 @@ +/* + * Copyright (c) 2017 Thomas Pornin + * + * Permission is hereby granted, free of charge, to any person obtaining + * a copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sublicense, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS + * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN + * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ + +#define BR_ENABLE_INTRINSICS 1 +#include "inner.h" + +#if BR_AES_X86NI + +/* see bearssl_block.h */ +const br_block_ctrcbc_class * +br_aes_x86ni_ctrcbc_get_vtable(void) +{ + return br_aes_x86ni_supported() ? &br_aes_x86ni_ctrcbc_vtable : NULL; +} + +/* see bearssl_block.h */ +void +br_aes_x86ni_ctrcbc_init(br_aes_x86ni_ctrcbc_keys *ctx, + const void *key, size_t len) +{ + ctx->vtable = &br_aes_x86ni_ctrcbc_vtable; + ctx->num_rounds = br_aes_x86ni_keysched_enc(ctx->skey.skni, key, len); +} + +BR_TARGETS_X86_UP + +/* see bearssl_block.h */ +BR_TARGET("sse2,sse4.1,aes") +void +br_aes_x86ni_ctrcbc_ctr(const br_aes_x86ni_ctrcbc_keys *ctx, + void *ctr, void *data, size_t len) +{ + unsigned char *buf; + unsigned num_rounds; + __m128i sk[15]; + __m128i ivx0, ivx1, ivx2, ivx3; + __m128i erev, zero, one, four, notthree; + unsigned u; + + buf = data; + num_rounds = ctx->num_rounds; + for (u = 0; u <= num_rounds; u ++) { + sk[u] = _mm_loadu_si128((void *)(ctx->skey.skni + (u << 4))); + } + + /* + * Some SSE2 constants. + */ + erev = _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, + 8, 9, 10, 11, 12, 13, 14, 15); + zero = _mm_setzero_si128(); + one = _mm_set_epi64x(0, 1); + four = _mm_set_epi64x(0, 4); + notthree = _mm_sub_epi64(zero, four); + + /* + * Decode the counter in big-endian and pre-increment the other + * three counters. + */ + ivx0 = _mm_shuffle_epi8(_mm_loadu_si128((void *)ctr), erev); + ivx1 = _mm_add_epi64(ivx0, one); + ivx1 = _mm_sub_epi64(ivx1, + _mm_slli_si128(_mm_cmpeq_epi64(ivx1, zero), 8)); + ivx2 = _mm_add_epi64(ivx1, one); + ivx2 = _mm_sub_epi64(ivx2, + _mm_slli_si128(_mm_cmpeq_epi64(ivx2, zero), 8)); + ivx3 = _mm_add_epi64(ivx2, one); + ivx3 = _mm_sub_epi64(ivx3, + _mm_slli_si128(_mm_cmpeq_epi64(ivx3, zero), 8)); + while (len > 0) { + __m128i x0, x1, x2, x3; + + /* + * Load counter values; we need to byteswap them because + * the specification says that they use big-endian. + */ + x0 = _mm_shuffle_epi8(ivx0, erev); + x1 = _mm_shuffle_epi8(ivx1, erev); + x2 = _mm_shuffle_epi8(ivx2, erev); + x3 = _mm_shuffle_epi8(ivx3, erev); + + x0 = _mm_xor_si128(x0, sk[0]); + x1 = _mm_xor_si128(x1, sk[0]); + x2 = _mm_xor_si128(x2, sk[0]); + x3 = _mm_xor_si128(x3, sk[0]); + x0 = _mm_aesenc_si128(x0, sk[1]); + x1 = _mm_aesenc_si128(x1, sk[1]); + x2 = _mm_aesenc_si128(x2, sk[1]); + x3 = _mm_aesenc_si128(x3, sk[1]); + x0 = _mm_aesenc_si128(x0, sk[2]); + x1 = _mm_aesenc_si128(x1, sk[2]); + x2 = _mm_aesenc_si128(x2, sk[2]); + x3 = _mm_aesenc_si128(x3, sk[2]); + x0 = _mm_aesenc_si128(x0, sk[3]); + x1 = _mm_aesenc_si128(x1, sk[3]); + x2 = _mm_aesenc_si128(x2, sk[3]); + x3 = _mm_aesenc_si128(x3, sk[3]); + x0 = _mm_aesenc_si128(x0, sk[4]); + x1 = _mm_aesenc_si128(x1, sk[4]); + x2 = _mm_aesenc_si128(x2, sk[4]); + x3 = _mm_aesenc_si128(x3, sk[4]); + x0 = _mm_aesenc_si128(x0, sk[5]); + x1 = _mm_aesenc_si128(x1, sk[5]); + x2 = _mm_aesenc_si128(x2, sk[5]); + x3 = _mm_aesenc_si128(x3, sk[5]); + x0 = _mm_aesenc_si128(x0, sk[6]); + x1 = _mm_aesenc_si128(x1, sk[6]); + x2 = _mm_aesenc_si128(x2, sk[6]); + x3 = _mm_aesenc_si128(x3, sk[6]); + x0 = _mm_aesenc_si128(x0, sk[7]); + x1 = _mm_aesenc_si128(x1, sk[7]); + x2 = _mm_aesenc_si128(x2, sk[7]); + x3 = _mm_aesenc_si128(x3, sk[7]); + x0 = _mm_aesenc_si128(x0, sk[8]); + x1 = _mm_aesenc_si128(x1, sk[8]); + x2 = _mm_aesenc_si128(x2, sk[8]); + x3 = _mm_aesenc_si128(x3, sk[8]); + x0 = _mm_aesenc_si128(x0, sk[9]); + x1 = _mm_aesenc_si128(x1, sk[9]); + x2 = _mm_aesenc_si128(x2, sk[9]); + x3 = _mm_aesenc_si128(x3, sk[9]); + if (num_rounds == 10) { + x0 = _mm_aesenclast_si128(x0, sk[10]); + x1 = _mm_aesenclast_si128(x1, sk[10]); + x2 = _mm_aesenclast_si128(x2, sk[10]); + x3 = _mm_aesenclast_si128(x3, sk[10]); + } else if (num_rounds == 12) { + x0 = _mm_aesenc_si128(x0, sk[10]); + x1 = _mm_aesenc_si128(x1, sk[10]); + x2 = _mm_aesenc_si128(x2, sk[10]); + x3 = _mm_aesenc_si128(x3, sk[10]); + x0 = _mm_aesenc_si128(x0, sk[11]); + x1 = _mm_aesenc_si128(x1, sk[11]); + x2 = _mm_aesenc_si128(x2, sk[11]); + x3 = _mm_aesenc_si128(x3, sk[11]); + x0 = _mm_aesenclast_si128(x0, sk[12]); + x1 = _mm_aesenclast_si128(x1, sk[12]); + x2 = _mm_aesenclast_si128(x2, sk[12]); + x3 = _mm_aesenclast_si128(x3, sk[12]); + } else { + x0 = _mm_aesenc_si128(x0, sk[10]); + x1 = _mm_aesenc_si128(x1, sk[10]); + x2 = _mm_aesenc_si128(x2, sk[10]); + x3 = _mm_aesenc_si128(x3, sk[10]); + x0 = _mm_aesenc_si128(x0, sk[11]); + x1 = _mm_aesenc_si128(x1, sk[11]); + x2 = _mm_aesenc_si128(x2, sk[11]); + x3 = _mm_aesenc_si128(x3, sk[11]); + x0 = _mm_aesenc_si128(x0, sk[12]); + x1 = _mm_aesenc_si128(x1, sk[12]); + x2 = _mm_aesenc_si128(x2, sk[12]); + x3 = _mm_aesenc_si128(x3, sk[12]); + x0 = _mm_aesenc_si128(x0, sk[13]); + x1 = _mm_aesenc_si128(x1, sk[13]); + x2 = _mm_aesenc_si128(x2, sk[13]); + x3 = _mm_aesenc_si128(x3, sk[13]); + x0 = _mm_aesenclast_si128(x0, sk[14]); + x1 = _mm_aesenclast_si128(x1, sk[14]); + x2 = _mm_aesenclast_si128(x2, sk[14]); + x3 = _mm_aesenclast_si128(x3, sk[14]); + } + if (len >= 64) { + x0 = _mm_xor_si128(x0, + _mm_loadu_si128((void *)(buf + 0))); + x1 = _mm_xor_si128(x1, + _mm_loadu_si128((void *)(buf + 16))); + x2 = _mm_xor_si128(x2, + _mm_loadu_si128((void *)(buf + 32))); + x3 = _mm_xor_si128(x3, + _mm_loadu_si128((void *)(buf + 48))); + _mm_storeu_si128((void *)(buf + 0), x0); + _mm_storeu_si128((void *)(buf + 16), x1); + _mm_storeu_si128((void *)(buf + 32), x2); + _mm_storeu_si128((void *)(buf + 48), x3); + buf += 64; + len -= 64; + } else { + unsigned char tmp[64]; + + _mm_storeu_si128((void *)(tmp + 0), x0); + _mm_storeu_si128((void *)(tmp + 16), x1); + _mm_storeu_si128((void *)(tmp + 32), x2); + _mm_storeu_si128((void *)(tmp + 48), x3); + for (u = 0; u < len; u ++) { + buf[u] ^= tmp[u]; + } + switch (len) { + case 16: + ivx0 = ivx1; + break; + case 32: + ivx0 = ivx2; + break; + case 48: + ivx0 = ivx3; + break; + } + break; + } + + /* + * Add 4 to each counter value. For carry propagation + * into the upper 64-bit words, we would need to compare + * the results with 4, but SSE2+ has only _signed_ + * comparisons. Instead, we mask out the low two bits, + * and check whether the remaining bits are zero. + */ + ivx0 = _mm_add_epi64(ivx0, four); + ivx1 = _mm_add_epi64(ivx1, four); + ivx2 = _mm_add_epi64(ivx2, four); + ivx3 = _mm_add_epi64(ivx3, four); + ivx0 = _mm_sub_epi64(ivx0, + _mm_slli_si128(_mm_cmpeq_epi64( + _mm_and_si128(ivx0, notthree), zero), 8)); + ivx1 = _mm_sub_epi64(ivx1, + _mm_slli_si128(_mm_cmpeq_epi64( + _mm_and_si128(ivx1, notthree), zero), 8)); + ivx2 = _mm_sub_epi64(ivx2, + _mm_slli_si128(_mm_cmpeq_epi64( + _mm_and_si128(ivx2, notthree), zero), 8)); + ivx3 = _mm_sub_epi64(ivx3, + _mm_slli_si128(_mm_cmpeq_epi64( + _mm_and_si128(ivx3, notthree), zero), 8)); + } + + /* + * Write back new counter value. The loop took care to put the + * right counter value in ivx0. + */ + _mm_storeu_si128((void *)ctr, _mm_shuffle_epi8(ivx0, erev)); +} + +/* see bearssl_block.h */ +BR_TARGET("sse2,sse4.1,aes") +void +br_aes_x86ni_ctrcbc_mac(const br_aes_x86ni_ctrcbc_keys *ctx, + void *cbcmac, const void *data, size_t len) +{ + const unsigned char *buf; + unsigned num_rounds; + __m128i sk[15], ivx; + unsigned u; + + buf = data; + ivx = _mm_loadu_si128(cbcmac); + num_rounds = ctx->num_rounds; + for (u = 0; u <= num_rounds; u ++) { + sk[u] = _mm_loadu_si128((void *)(ctx->skey.skni + (u << 4))); + } + while (len > 0) { + __m128i x; + + x = _mm_xor_si128(_mm_loadu_si128((void *)buf), ivx); + x = _mm_xor_si128(x, sk[0]); + x = _mm_aesenc_si128(x, sk[1]); + x = _mm_aesenc_si128(x, sk[2]); + x = _mm_aesenc_si128(x, sk[3]); + x = _mm_aesenc_si128(x, sk[4]); + x = _mm_aesenc_si128(x, sk[5]); + x = _mm_aesenc_si128(x, sk[6]); + x = _mm_aesenc_si128(x, sk[7]); + x = _mm_aesenc_si128(x, sk[8]); + x = _mm_aesenc_si128(x, sk[9]); + if (num_rounds == 10) { + x = _mm_aesenclast_si128(x, sk[10]); + } else if (num_rounds == 12) { + x = _mm_aesenc_si128(x, sk[10]); + x = _mm_aesenc_si128(x, sk[11]); + x = _mm_aesenclast_si128(x, sk[12]); + } else { + x = _mm_aesenc_si128(x, sk[10]); + x = _mm_aesenc_si128(x, sk[11]); + x = _mm_aesenc_si128(x, sk[12]); + x = _mm_aesenc_si128(x, sk[13]); + x = _mm_aesenclast_si128(x, sk[14]); + } + ivx = x; + buf += 16; + len -= 16; + } + _mm_storeu_si128(cbcmac, ivx); +} + +/* see bearssl_block.h */ +BR_TARGET("sse2,sse4.1,aes") +void +br_aes_x86ni_ctrcbc_encrypt(const br_aes_x86ni_ctrcbc_keys *ctx, + void *ctr, void *cbcmac, void *data, size_t len) +{ + unsigned char *buf; + unsigned num_rounds; + __m128i sk[15]; + __m128i ivx, cmx; + __m128i erev, zero, one; + unsigned u; + int first_iter; + + num_rounds = ctx->num_rounds; + for (u = 0; u <= num_rounds; u ++) { + sk[u] = _mm_loadu_si128((void *)(ctx->skey.skni + (u << 4))); + } + + /* + * Some SSE2 constants. + */ + erev = _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, + 8, 9, 10, 11, 12, 13, 14, 15); + zero = _mm_setzero_si128(); + one = _mm_set_epi64x(0, 1); + + /* + * Decode the counter in big-endian. + */ + ivx = _mm_shuffle_epi8(_mm_loadu_si128(ctr), erev); + cmx = _mm_loadu_si128(cbcmac); + + buf = data; + first_iter = 1; + while (len > 0) { + __m128i dx, x0, x1; + + /* + * Load initial values: + * dx encrypted block of data + * x0 counter (for CTR encryption) + * x1 input for CBC-MAC + */ + dx = _mm_loadu_si128((void *)buf); + x0 = _mm_shuffle_epi8(ivx, erev); + x1 = cmx; + + x0 = _mm_xor_si128(x0, sk[0]); + x1 = _mm_xor_si128(x1, sk[0]); + x0 = _mm_aesenc_si128(x0, sk[1]); + x1 = _mm_aesenc_si128(x1, sk[1]); + x0 = _mm_aesenc_si128(x0, sk[2]); + x1 = _mm_aesenc_si128(x1, sk[2]); + x0 = _mm_aesenc_si128(x0, sk[3]); + x1 = _mm_aesenc_si128(x1, sk[3]); + x0 = _mm_aesenc_si128(x0, sk[4]); + x1 = _mm_aesenc_si128(x1, sk[4]); + x0 = _mm_aesenc_si128(x0, sk[5]); + x1 = _mm_aesenc_si128(x1, sk[5]); + x0 = _mm_aesenc_si128(x0, sk[6]); + x1 = _mm_aesenc_si128(x1, sk[6]); + x0 = _mm_aesenc_si128(x0, sk[7]); + x1 = _mm_aesenc_si128(x1, sk[7]); + x0 = _mm_aesenc_si128(x0, sk[8]); + x1 = _mm_aesenc_si128(x1, sk[8]); + x0 = _mm_aesenc_si128(x0, sk[9]); + x1 = _mm_aesenc_si128(x1, sk[9]); + if (num_rounds == 10) { + x0 = _mm_aesenclast_si128(x0, sk[10]); + x1 = _mm_aesenclast_si128(x1, sk[10]); + } else if (num_rounds == 12) { + x0 = _mm_aesenc_si128(x0, sk[10]); + x1 = _mm_aesenc_si128(x1, sk[10]); + x0 = _mm_aesenc_si128(x0, sk[11]); + x1 = _mm_aesenc_si128(x1, sk[11]); + x0 = _mm_aesenclast_si128(x0, sk[12]); + x1 = _mm_aesenclast_si128(x1, sk[12]); + } else { + x0 = _mm_aesenc_si128(x0, sk[10]); + x1 = _mm_aesenc_si128(x1, sk[10]); + x0 = _mm_aesenc_si128(x0, sk[11]); + x1 = _mm_aesenc_si128(x1, sk[11]); + x0 = _mm_aesenc_si128(x0, sk[12]); + x1 = _mm_aesenc_si128(x1, sk[12]); + x0 = _mm_aesenc_si128(x0, sk[13]); + x1 = _mm_aesenc_si128(x1, sk[13]); + x0 = _mm_aesenclast_si128(x0, sk[14]); + x1 = _mm_aesenclast_si128(x1, sk[14]); + } + + x0 = _mm_xor_si128(x0, dx); + if (first_iter) { + cmx = _mm_xor_si128(cmx, x0); + first_iter = 0; + } else { + cmx = _mm_xor_si128(x1, x0); + } + _mm_storeu_si128((void *)buf, x0); + + buf += 16; + len -= 16; + + /* + * Increment the counter value. + */ + ivx = _mm_add_epi64(ivx, one); + ivx = _mm_sub_epi64(ivx, + _mm_slli_si128(_mm_cmpeq_epi64(ivx, zero), 8)); + + /* + * If this was the last iteration, then compute the + * extra block encryption to complete CBC-MAC. + */ + if (len == 0) { + cmx = _mm_xor_si128(cmx, sk[0]); + cmx = _mm_aesenc_si128(cmx, sk[1]); + cmx = _mm_aesenc_si128(cmx, sk[2]); + cmx = _mm_aesenc_si128(cmx, sk[3]); + cmx = _mm_aesenc_si128(cmx, sk[4]); + cmx = _mm_aesenc_si128(cmx, sk[5]); + cmx = _mm_aesenc_si128(cmx, sk[6]); + cmx = _mm_aesenc_si128(cmx, sk[7]); + cmx = _mm_aesenc_si128(cmx, sk[8]); + cmx = _mm_aesenc_si128(cmx, sk[9]); + if (num_rounds == 10) { + cmx = _mm_aesenclast_si128(cmx, sk[10]); + } else if (num_rounds == 12) { + cmx = _mm_aesenc_si128(cmx, sk[10]); + cmx = _mm_aesenc_si128(cmx, sk[11]); + cmx = _mm_aesenclast_si128(cmx, sk[12]); + } else { + cmx = _mm_aesenc_si128(cmx, sk[10]); + cmx = _mm_aesenc_si128(cmx, sk[11]); + cmx = _mm_aesenc_si128(cmx, sk[12]); + cmx = _mm_aesenc_si128(cmx, sk[13]); + cmx = _mm_aesenclast_si128(cmx, sk[14]); + } + break; + } + } + + /* + * Write back new counter value and CBC-MAC value. + */ + _mm_storeu_si128(ctr, _mm_shuffle_epi8(ivx, erev)); + _mm_storeu_si128(cbcmac, cmx); +} + +/* see bearssl_block.h */ +BR_TARGET("sse2,sse4.1,aes") +void +br_aes_x86ni_ctrcbc_decrypt(const br_aes_x86ni_ctrcbc_keys *ctx, + void *ctr, void *cbcmac, void *data, size_t len) +{ + unsigned char *buf; + unsigned num_rounds; + __m128i sk[15]; + __m128i ivx, cmx; + __m128i erev, zero, one; + unsigned u; + + num_rounds = ctx->num_rounds; + for (u = 0; u <= num_rounds; u ++) { + sk[u] = _mm_loadu_si128((void *)(ctx->skey.skni + (u << 4))); + } + + /* + * Some SSE2 constants. + */ + erev = _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, + 8, 9, 10, 11, 12, 13, 14, 15); + zero = _mm_setzero_si128(); + one = _mm_set_epi64x(0, 1); + + /* + * Decode the counter in big-endian. + */ + ivx = _mm_shuffle_epi8(_mm_loadu_si128(ctr), erev); + cmx = _mm_loadu_si128(cbcmac); + + buf = data; + while (len > 0) { + __m128i dx, x0, x1; + + /* + * Load initial values: + * dx encrypted block of data + * x0 counter (for CTR encryption) + * x1 input for CBC-MAC + */ + dx = _mm_loadu_si128((void *)buf); + x0 = _mm_shuffle_epi8(ivx, erev); + x1 = _mm_xor_si128(cmx, dx); + + x0 = _mm_xor_si128(x0, sk[0]); + x1 = _mm_xor_si128(x1, sk[0]); + x0 = _mm_aesenc_si128(x0, sk[1]); + x1 = _mm_aesenc_si128(x1, sk[1]); + x0 = _mm_aesenc_si128(x0, sk[2]); + x1 = _mm_aesenc_si128(x1, sk[2]); + x0 = _mm_aesenc_si128(x0, sk[3]); + x1 = _mm_aesenc_si128(x1, sk[3]); + x0 = _mm_aesenc_si128(x0, sk[4]); + x1 = _mm_aesenc_si128(x1, sk[4]); + x0 = _mm_aesenc_si128(x0, sk[5]); + x1 = _mm_aesenc_si128(x1, sk[5]); + x0 = _mm_aesenc_si128(x0, sk[6]); + x1 = _mm_aesenc_si128(x1, sk[6]); + x0 = _mm_aesenc_si128(x0, sk[7]); + x1 = _mm_aesenc_si128(x1, sk[7]); + x0 = _mm_aesenc_si128(x0, sk[8]); + x1 = _mm_aesenc_si128(x1, sk[8]); + x0 = _mm_aesenc_si128(x0, sk[9]); + x1 = _mm_aesenc_si128(x1, sk[9]); + if (num_rounds == 10) { + x0 = _mm_aesenclast_si128(x0, sk[10]); + x1 = _mm_aesenclast_si128(x1, sk[10]); + } else if (num_rounds == 12) { + x0 = _mm_aesenc_si128(x0, sk[10]); + x1 = _mm_aesenc_si128(x1, sk[10]); + x0 = _mm_aesenc_si128(x0, sk[11]); + x1 = _mm_aesenc_si128(x1, sk[11]); + x0 = _mm_aesenclast_si128(x0, sk[12]); + x1 = _mm_aesenclast_si128(x1, sk[12]); + } else { + x0 = _mm_aesenc_si128(x0, sk[10]); + x1 = _mm_aesenc_si128(x1, sk[10]); + x0 = _mm_aesenc_si128(x0, sk[11]); + x1 = _mm_aesenc_si128(x1, sk[11]); + x0 = _mm_aesenc_si128(x0, sk[12]); + x1 = _mm_aesenc_si128(x1, sk[12]); + x0 = _mm_aesenc_si128(x0, sk[13]); + x1 = _mm_aesenc_si128(x1, sk[13]); + x0 = _mm_aesenclast_si128(x0, sk[14]); + x1 = _mm_aesenclast_si128(x1, sk[14]); + } + x0 = _mm_xor_si128(x0, dx); + cmx = x1; + _mm_storeu_si128((void *)buf, x0); + + buf += 16; + len -= 16; + + /* + * Increment the counter value. + */ + ivx = _mm_add_epi64(ivx, one); + ivx = _mm_sub_epi64(ivx, + _mm_slli_si128(_mm_cmpeq_epi64(ivx, zero), 8)); + } + + /* + * Write back new counter value and CBC-MAC value. + */ + _mm_storeu_si128(ctr, _mm_shuffle_epi8(ivx, erev)); + _mm_storeu_si128(cbcmac, cmx); +} + +BR_TARGETS_X86_DOWN + +/* see bearssl_block.h */ +const br_block_ctrcbc_class br_aes_x86ni_ctrcbc_vtable = { + sizeof(br_aes_x86ni_ctrcbc_keys), + 16, + 4, + (void (*)(const br_block_ctrcbc_class **, const void *, size_t)) + &br_aes_x86ni_ctrcbc_init, + (void (*)(const br_block_ctrcbc_class *const *, + void *, void *, void *, size_t)) + &br_aes_x86ni_ctrcbc_encrypt, + (void (*)(const br_block_ctrcbc_class *const *, + void *, void *, void *, size_t)) + &br_aes_x86ni_ctrcbc_decrypt, + (void (*)(const br_block_ctrcbc_class *const *, + void *, void *, size_t)) + &br_aes_x86ni_ctrcbc_ctr, + (void (*)(const br_block_ctrcbc_class *const *, + void *, const void *, size_t)) + &br_aes_x86ni_ctrcbc_mac +}; + +#else + +/* see bearssl_block.h */ +const br_block_ctrcbc_class * +br_aes_x86ni_ctrcbc_get_vtable(void) +{ + return NULL; +} + +#endif