From: Thomas Pornin Date: Mon, 23 Oct 2017 21:27:28 +0000 (+0200) Subject: Added generic EAX and CCM implementations. X-Git-Tag: v0.6~20 X-Git-Url: https://www.bearssl.org/gitweb//home/git/?p=BearSSL;a=commitdiff_plain;h=dddc412922f42f9c7dd6177133828be724f44424;ds=inline Added generic EAX and CCM implementations. --- diff --git a/inc/bearssl_aead.h b/inc/bearssl_aead.h index 09cb9e8..b1e52a3 100644 --- a/inc/bearssl_aead.h +++ b/inc/bearssl_aead.h @@ -127,7 +127,7 @@ extern "C" { * * - Nonce, plaintext and additional authenticated data all consist * in an integral number of bytes. There is no provision to use - * elements whose lengh in bits is not a multiple of 8. + * elements whose length in bits is not a multiple of 8. * * Each AEAD algorithm has its own requirements and limits on the sizes * of additional data and plaintext. This API does not provide any @@ -169,6 +169,9 @@ extern "C" { * Note that there is no OOP method for context initialisation: the * various AEAD algorithms have different requirements that would not * map well to a single initialisation API. + * + * The OOP API is not provided for CCM, due to its specific requirements + * (length of plaintext must be known in advance). */ /** @@ -213,7 +216,7 @@ struct br_aead_class_ { * * \param cc AEAD context structure. * \param data pointer to additional authenticated data. - * \param len length of additiona authenticated data (in bytes). + * \param len length of additional authenticated data (in bytes). */ void (*aad_inject)(const br_aead_class **cc, const void *data, size_t len); @@ -266,6 +269,8 @@ struct br_aead_class_ { * `check_tag()` function may be used to compute and check the * tag value. * + * Tag length depends on the AEAD algorithm. + * * \param cc AEAD context structure. * \param tag destination buffer for the tag. */ @@ -282,11 +287,44 @@ struct br_aead_class_ { * data or the tag was altered in transit, normally leading to * wholesale rejection of the complete message. * + * Tag length depends on the AEAD algorithm. + * * \param cc AEAD context structure. - * \param tag tag value to compare with (16 bytes). + * \param tag tag value to compare with. * \return 1 on success (exact match of tag value), 0 otherwise. */ uint32_t (*check_tag)(const br_aead_class **cc, const void *tag); + + /** + * \brief Compute authentication tag (with truncation). + * + * This function is similar to `get_tag()`, except that the tag + * length is provided. Some AEAD algorithms allow several tag + * lengths, usually by truncating the normal tag. Shorter tags + * mechanically increase success probability of forgeries. + * The range of allowed tag lengths depends on the algorithm. + * + * \param cc AEAD context structure. + * \param tag destination buffer for the tag. + * \param len tag length (in bytes). + */ + void (*get_tag_trunc)(const br_aead_class **cc, void *tag, size_t len); + + /** + * \brief Compute and check authentication tag (with truncation). + * + * This function is similar to `check_tag()` except that it + * works over an explicit tag length. See `get_tag()` for a + * discussion of explicit tag lengths; the range of allowed tag + * lengths depends on the algorithm. + * + * \param cc AEAD context structure. + * \param tag tag value to compare with. + * \param len tag length (in bytes). + * \return 1 on success (exact match of tag value), 0 otherwise. + */ + uint32_t (*check_tag_trunc)(const br_aead_class **cc, + const void *tag, size_t len); }; /** @@ -379,7 +417,7 @@ void br_gcm_reset(br_gcm_context *ctx, const void *iv, size_t len); * * \param ctx GCM context structure. * \param data pointer to additional authenticated data. - * \param len length of additiona authenticated data (in bytes). + * \param len length of additional authenticated data (in bytes). */ void br_gcm_aad_inject(br_gcm_context *ctx, const void *data, size_t len); @@ -449,11 +487,478 @@ void br_gcm_get_tag(br_gcm_context *ctx, void *tag); */ uint32_t br_gcm_check_tag(br_gcm_context *ctx, const void *tag); +/** + * \brief Compute GCM authentication tag (with truncation). + * + * This function is similar to `br_gcm_get_tag()`, except that it allows + * the tag to be truncated to a smaller length. The intended tag length + * is provided as `len` (in bytes); it MUST be no more than 16, but + * it may be smaller. Note that decreasing tag length mechanically makes + * forgeries easier; NIST SP 800-38D specifies that the tag length shall + * lie between 12 and 16 bytes (inclusive), but may be truncated down to + * 4 or 8 bytes, for specific applications that can tolerate it. It must + * also be noted that successful forgeries leak information on the + * authentication key, making subsequent forgeries easier. Therefore, + * tag truncation, and in particular truncation to sizes lower than 12 + * bytes, shall be envisioned only with great care. + * + * The tag is written in the provided `tag` buffer. This call terminates + * the GCM run: no data may be processed with that GCM context + * afterwards, until `br_gcm_reset()` is called to initiate a new GCM + * run. + * + * The tag value must normally be sent along with the encrypted data. + * When decrypting, the tag value must be recomputed and compared with + * the received tag: if the two tag values differ, then either the tag + * or the encrypted data was altered in transit. As an alternative to + * this function, the `br_gcm_check_tag_trunc()` function can be used to + * compute and check the tag value. + * + * \param ctx GCM context structure. + * \param tag destination buffer for the tag. + * \param len tag length (16 bytes or less). + */ +void br_gcm_get_tag_trunc(br_gcm_context *ctx, void *tag, size_t len); + +/** + * \brief Compute and check GCM authentication tag (with truncation). + * + * This function is an alternative to `br_gcm_get_tag_trunc()`, normally used + * on the receiving end (i.e. when decrypting value). The tag value is + * recomputed and compared with the provided tag value. If they match, 1 + * is returned; on mismatch, 0 is returned. A returned value of 0 means + * that the data or the tag was altered in transit, normally leading to + * wholesale rejection of the complete message. + * + * Tag length MUST be 16 bytes or less. The normal GCM tag length is 16 + * bytes. See `br_check_tag_trunc()` for some discussion on the potential + * perils of truncating authentication tags. + * + * \param ctx GCM context structure. + * \param tag tag value to compare with. + * \param len tag length (in bytes). + * \return 1 on success (exact match of tag value), 0 otherwise. + */ +uint32_t br_gcm_check_tag_trunc(br_gcm_context *ctx, + const void *tag, size_t len); + /** * \brief Class instance for GCM. */ extern const br_aead_class br_gcm_vtable; +/** + * \brief Context structure for EAX. + * + * EAX is an AEAD mode that combines a block cipher in CTR mode with + * CBC-MAC using the same block cipher and the same key, to provide + * authenticated encryption: + * + * - Any block cipher with 16-byte blocks can be used with EAX + * (technically, other block sizes are defined as well, but this + * is not implemented by these functions; shorter blocks also + * imply numerous security issues). + * + * - The nonce can have any length, as long as nonce values are + * not reused (thus, if nonces are randomly selected, the nonce + * size should be such that reuse probability is negligible). + * + * - Additional authenticated data length is unlimited. + * + * - Message length is unlimited. + * + * - The authentication tag has length 16 bytes. + * + * The EAX initialisation function receives as parameter an + * _initialised_ block cipher implementation context, with the secret + * key already set. A pointer to that context will be kept within the + * EAX context structure. It is up to the caller to allocate and + * initialise that block cipher context. + */ +typedef struct { + /** \brief Pointer to vtable for this context. */ + const br_aead_class *vtable; + +#ifndef BR_DOXYGEN_IGNORE + const br_block_ctrcbc_class **bctx; + unsigned char L2[16]; + unsigned char L4[16]; + unsigned char nonce[16]; + unsigned char head[16]; + unsigned char ctr[16]; + unsigned char cbcmac[16]; + unsigned char buf[16]; + size_t ptr; +#endif +} br_eax_context; + +/** + * \brief Initialize an EAX context. + * + * A block cipher implementation, with its initialised context + * structure, is provided. The block cipher MUST use 16-byte blocks in + * CTR + CBC-MAC mode, and its secret key MUST have been already set in + * the provided context. The parameters are linked in the EAX context. + * + * After this function has been called, the `br_eax_reset()` function must + * be called, to provide the nonce for EAX computation. + * + * \param ctx EAX context structure. + * \param bctx block cipher context (already initialised with secret key). + */ +void br_eax_init(br_eax_context *ctx, const br_block_ctrcbc_class **bctx); + +/** + * \brief Reset an EAX context. + * + * This function resets an already initialised EAX context for a new + * computation run. Implementations and keys are conserved. This function + * can be called at any time; it cancels any ongoing EAX computation that + * uses the provided context structure. + * + * It is critical to EAX security that nonce values are not repeated for + * the same encryption key. Nonces can have arbitrary length. If nonces + * are randomly generated, then a nonce length of at least 128 bits (16 + * bytes) is recommended, to make nonce reuse probability sufficiently + * low. + * + * \param ctx EAX context structure. + * \param nonce EAX nonce to use. + * \param len EAX nonce length (in bytes). + */ +void br_eax_reset(br_eax_context *ctx, const void *nonce, size_t len); + +/** + * \brief Inject additional authenticated data into EAX. + * + * The provided data is injected into a running EAX computation. Additional + * data must be injected _before_ the call to `br_eax_flip()`. + * Additional data can be injected in several chunks of arbitrary length; + * the total amount of additional authenticated data is unlimited. + * + * \param ctx EAX context structure. + * \param data pointer to additional authenticated data. + * \param len length of additional authenticated data (in bytes). + */ +void br_eax_aad_inject(br_eax_context *ctx, const void *data, size_t len); + +/** + * \brief Finish injection of additional authenticated data into EAX. + * + * This function MUST be called before beginning the actual encryption + * or decryption (with `br_eax_run()`), even if no additional authenticated + * data was injected. No additional authenticated data may be injected + * after this function call. + * + * \param ctx EAX context structure. + */ +void br_eax_flip(br_eax_context *ctx); + +/** + * \brief Encrypt or decrypt some data with EAX. + * + * Data encryption or decryption can be done after `br_eax_flip()` + * has been called on the context. If `encrypt` is non-zero, then the + * provided data shall be plaintext, and it is encrypted in place. + * Otherwise, the data shall be ciphertext, and it is decrypted in place. + * + * Data may be provided in several chunks of arbitrary length. + * + * \param ctx EAX context structure. + * \param encrypt non-zero for encryption, zero for decryption. + * \param data data to encrypt or decrypt. + * \param len data length (in bytes). + */ +void br_eax_run(br_eax_context *ctx, int encrypt, void *data, size_t len); + +/** + * \brief Compute EAX authentication tag. + * + * Compute the EAX authentication tag. The tag is a 16-byte value which + * is written in the provided `tag` buffer. This call terminates the + * EAX run: no data may be processed with that EAX context afterwards, + * until `br_eax_reset()` is called to initiate a new EAX run. + * + * The tag value must normally be sent along with the encrypted data. + * When decrypting, the tag value must be recomputed and compared with + * the received tag: if the two tag values differ, then either the tag + * or the encrypted data was altered in transit. As an alternative to + * this function, the `br_eax_check_tag()` function can be used to + * compute and check the tag value. + * + * \param ctx EAX context structure. + * \param tag destination buffer for the tag (16 bytes). + */ +void br_eax_get_tag(br_eax_context *ctx, void *tag); + +/** + * \brief Compute and check EAX authentication tag. + * + * This function is an alternative to `br_eax_get_tag()`, normally used + * on the receiving end (i.e. when decrypting value). The tag value is + * recomputed and compared with the provided tag value. If they match, 1 + * is returned; on mismatch, 0 is returned. A returned value of 0 means + * that the data or the tag was altered in transit, normally leading to + * wholesale rejection of the complete message. + * + * \param ctx EAX context structure. + * \param tag tag value to compare with (16 bytes). + * \return 1 on success (exact match of tag value), 0 otherwise. + */ +uint32_t br_eax_check_tag(br_eax_context *ctx, const void *tag); + +/** + * \brief Compute EAX authentication tag (with truncation). + * + * This function is similar to `br_eax_get_tag()`, except that it allows + * the tag to be truncated to a smaller length. The intended tag length + * is provided as `len` (in bytes); it MUST be no more than 16, but + * it may be smaller. Note that decreasing tag length mechanically makes + * forgeries easier; NIST SP 800-38D specifies that the tag length shall + * lie between 12 and 16 bytes (inclusive), but may be truncated down to + * 4 or 8 bytes, for specific applications that can tolerate it. It must + * also be noted that successful forgeries leak information on the + * authentication key, making subsequent forgeries easier. Therefore, + * tag truncation, and in particular truncation to sizes lower than 12 + * bytes, shall be envisioned only with great care. + * + * The tag is written in the provided `tag` buffer. This call terminates + * the EAX run: no data may be processed with that EAX context + * afterwards, until `br_eax_reset()` is called to initiate a new EAX + * run. + * + * The tag value must normally be sent along with the encrypted data. + * When decrypting, the tag value must be recomputed and compared with + * the received tag: if the two tag values differ, then either the tag + * or the encrypted data was altered in transit. As an alternative to + * this function, the `br_eax_check_tag_trunc()` function can be used to + * compute and check the tag value. + * + * \param ctx EAX context structure. + * \param tag destination buffer for the tag. + * \param len tag length (16 bytes or less). + */ +void br_eax_get_tag_trunc(br_eax_context *ctx, void *tag, size_t len); + +/** + * \brief Compute and check EAX authentication tag (with truncation). + * + * This function is an alternative to `br_eax_get_tag_trunc()`, normally used + * on the receiving end (i.e. when decrypting value). The tag value is + * recomputed and compared with the provided tag value. If they match, 1 + * is returned; on mismatch, 0 is returned. A returned value of 0 means + * that the data or the tag was altered in transit, normally leading to + * wholesale rejection of the complete message. + * + * Tag length MUST be 16 bytes or less. The normal EAX tag length is 16 + * bytes. See `br_check_tag_trunc()` for some discussion on the potential + * perils of truncating authentication tags. + * + * \param ctx EAX context structure. + * \param tag tag value to compare with. + * \param len tag length (in bytes). + * \return 1 on success (exact match of tag value), 0 otherwise. + */ +uint32_t br_eax_check_tag_trunc(br_eax_context *ctx, + const void *tag, size_t len); + +/** + * \brief Class instance for EAX. + */ +extern const br_aead_class br_eax_vtable; + +/** + * \brief Context structure for CCM. + * + * CCM is an AEAD mode that combines a block cipher in CTR mode with + * CBC-MAC using the same block cipher and the same key, to provide + * authenticated encryption: + * + * - Any block cipher with 16-byte blocks can be used with CCM + * (technically, other block sizes are defined as well, but this + * is not implemented by these functions; shorter blocks also + * imply numerous security issues). + * + * - The authentication tag length, and plaintext length, MUST be + * known when starting processing data. Plaintext and ciphertext + * can still be provided by chunks, but the total size must match + * the value provided upon initialisation. + * + * - The nonce length is constrained betwen 7 and 13 bytes (inclusive). + * Furthermore, the plaintext length, when encoded, must fit over + * 15-nonceLen bytes; thus, if the nonce has length 13 bytes, then + * the plaintext length cannot exceed 65535 bytes. + * + * - Additional authenticated data length is practically unlimited + * (formal limit is at 2^64 bytes). + * + * - The authentication tag has length 4 to 16 bytes (even values only). + * + * The CCM initialisation function receives as parameter an + * _initialised_ block cipher implementation context, with the secret + * key already set. A pointer to that context will be kept within the + * CCM context structure. It is up to the caller to allocate and + * initialise that block cipher context. + */ +typedef struct { +#ifndef BR_DOXYGEN_IGNORE + const br_block_ctrcbc_class **bctx; + unsigned char ctr[16]; + unsigned char cbcmac[16]; + unsigned char tagmask[16]; + unsigned char buf[16]; + size_t ptr; + size_t tag_len; +#endif +} br_ccm_context; + +/** + * \brief Initialize a CCM context. + * + * A block cipher implementation, with its initialised context + * structure, is provided. The block cipher MUST use 16-byte blocks in + * CTR + CBC-MAC mode, and its secret key MUST have been already set in + * the provided context. The parameters are linked in the CCM context. + * + * After this function has been called, the `br_ccm_reset()` function must + * be called, to provide the nonce for CCM computation. + * + * \param ctx CCM context structure. + * \param bctx block cipher context (already initialised with secret key). + */ +void br_ccm_init(br_ccm_context *ctx, const br_block_ctrcbc_class **bctx); + +/** + * \brief Reset a CCM context. + * + * This function resets an already initialised CCM context for a new + * computation run. Implementations and keys are conserved. This function + * can be called at any time; it cancels any ongoing CCM computation that + * uses the provided context structure. + * + * The `aad_len` parameter contains the total length, in bytes, of the + * additional authenticated data. It may be zero. That length MUST be + * exact. + * + * The `data_len` parameter contains the total length, in bytes, of the + * data that will be injected (plaintext or ciphertext). That length MUST + * be exact. Moreover, that length MUST be less than 2^(8*(15-nonce_len)). + * + * The nonce length (`nonce_len`), in bytes, must be in the 7..13 range + * (inclusive). + * + * The tag length (`tag_len`), in bytes, must be in the 4..16 range, and + * be an even integer. Short tags mechanically allow for higher forgery + * probabilities; hence, tag sizes smaller than 12 bytes shall be used only + * with care. + * + * It is critical to CCM security that nonce values are not repeated for + * the same encryption key. Random generation of nonces is not generally + * recommended, due to the relatively small maximum nonce value. + * + * Returned value is 1 on success, 0 on error. An error is reported if + * the tag or nonce length is out of range, or if the + * plaintext/ciphertext length cannot be encoded with the specified + * nonce length. + * + * \param ctx CCM context structure. + * \param nonce CCM nonce to use. + * \param nonce_len CCM nonce length (in bytes, 7 to 13). + * \param aad_len additional authenticated data length (in bytes). + * \param data_len plaintext/ciphertext length (in bytes). + * \param tag_len tag length (in bytes). + * \return 1 on success, 0 on error. + */ +int br_ccm_reset(br_ccm_context *ctx, const void *nonce, size_t nonce_len, + uint64_t aad_len, uint64_t data_len, size_t tag_len); + +/** + * \brief Inject additional authenticated data into CCM. + * + * The provided data is injected into a running CCM computation. Additional + * data must be injected _before_ the call to `br_ccm_flip()`. + * Additional data can be injected in several chunks of arbitrary length, + * but the total amount MUST exactly match the value which was provided + * to `br_ccm_reset()`. + * + * \param ctx CCM context structure. + * \param data pointer to additional authenticated data. + * \param len length of additional authenticated data (in bytes). + */ +void br_ccm_aad_inject(br_ccm_context *ctx, const void *data, size_t len); + +/** + * \brief Finish injection of additional authenticated data into CCM. + * + * This function MUST be called before beginning the actual encryption + * or decryption (with `br_ccm_run()`), even if no additional authenticated + * data was injected. No additional authenticated data may be injected + * after this function call. + * + * \param ctx CCM context structure. + */ +void br_ccm_flip(br_ccm_context *ctx); + +/** + * \brief Encrypt or decrypt some data with CCM. + * + * Data encryption or decryption can be done after `br_ccm_flip()` + * has been called on the context. If `encrypt` is non-zero, then the + * provided data shall be plaintext, and it is encrypted in place. + * Otherwise, the data shall be ciphertext, and it is decrypted in place. + * + * Data may be provided in several chunks of arbitrary length, provided + * that the total length exactly matches the length provided to the + * `br_ccm_reset()` call. + * + * \param ctx CCM context structure. + * \param encrypt non-zero for encryption, zero for decryption. + * \param data data to encrypt or decrypt. + * \param len data length (in bytes). + */ +void br_ccm_run(br_ccm_context *ctx, int encrypt, void *data, size_t len); + +/** + * \brief Compute CCM authentication tag. + * + * Compute the CCM authentication tag. This call terminates the CCM + * run: all data must have been injected with `br_ccm_run()` (in zero, + * one or more successive calls). After this function has been called, + * no more data can br processed; a `br_ccm_reset()` call is required + * to start a new message. + * + * The tag length was provided upon context initialisation (last call + * to `br_ccm_reset()`); it is returned by this function. + * + * The tag value must normally be sent along with the encrypted data. + * When decrypting, the tag value must be recomputed and compared with + * the received tag: if the two tag values differ, then either the tag + * or the encrypted data was altered in transit. As an alternative to + * this function, the `br_ccm_check_tag()` function can be used to + * compute and check the tag value. + * + * \param ctx CCM context structure. + * \param tag destination buffer for the tag (up to 16 bytes). + * \return the tag length (in bytes). + */ +size_t br_ccm_get_tag(br_ccm_context *ctx, void *tag); + +/** + * \brief Compute and check CCM authentication tag. + * + * This function is an alternative to `br_ccm_get_tag()`, normally used + * on the receiving end (i.e. when decrypting value). The tag value is + * recomputed and compared with the provided tag value. If they match, 1 + * is returned; on mismatch, 0 is returned. A returned value of 0 means + * that the data or the tag was altered in transit, normally leading to + * wholesale rejection of the complete message. + * + * \param ctx CCM context structure. + * \param tag tag value to compare with (up to 16 bytes). + * \return 1 on success (exact match of tag value), 0 otherwise. + */ +uint32_t br_ccm_check_tag(br_ccm_context *ctx, const void *tag); + #ifdef __cplusplus } #endif diff --git a/inc/bearssl_block.h b/inc/bearssl_block.h index 24f09ac..4772779 100644 --- a/inc/bearssl_block.h +++ b/inc/bearssl_block.h @@ -136,6 +136,73 @@ extern "C" { * chunked processing, provided that each chunk length (except possibly * the last one) is a multiple of the block size. * + * - `br_xxx_ctrcbc_keys` + * + * Context structure that contains the subkeys resulting from the + * key expansion. These subkeys are appropriate for doing combined + * CTR encryption/decryption and CBC-MAC, as used in the CCM and EAX + * authenticated encryption modes. The structure first field is + * called `vtable` and points to the appropriate OOP structure. + * + * - `br_xxx_ctrcbc_init(br_xxx_ctr_keys *ctx, const void *key, size_t len)` + * + * Perform key expansion: subkeys for combined CTR + * encryption/decryption and CBC-MAC are computed and written in the + * provided context structure. The key length MUST be adequate for + * the implemented block cipher. This function also sets the + * `vtable` field. + * + * - `br_xxx_ctrcbc_encrypt(const br_xxx_ctrcbc_keys *ctx, void *ctr, void *cbcmac, void *data, size_t len)` + * + * Perform CTR encryption of some data, and CBC-MAC. Processing is + * done "in place" (the output data replaces the input data). This + * function applies CTR encryption on the data, using a full + * block-size counter (i.e. for 128-bit blocks, the counter is + * incremented as a 128-bit value). The 'ctr' array contains the + * initial value for the counter (used in the first block) and it is + * updated with the new value after data processing. The 'cbcmac' + * value shall point to a block-sized value which is used as IV for + * CBC-MAC, computed over the encrypted data (output of CTR + * encryption); the resulting CBC-MAC is written over 'cbcmac' on + * output. + * + * The data length MUST be a multiple of the block size. + * + * - `br_xxx_ctrcbc_decrypt(const br_xxx_ctrcbc_keys *ctx, void *ctr, void *cbcmac, void *data, size_t len)` + * + * Perform CTR decryption of some data, and CBC-MAC. Processing is + * done "in place" (the output data replaces the input data). This + * function applies CTR decryption on the data, using a full + * block-size counter (i.e. for 128-bit blocks, the counter is + * incremented as a 128-bit value). The 'ctr' array contains the + * initial value for the counter (used in the first block) and it is + * updated with the new value after data processing. The 'cbcmac' + * value shall point to a block-sized value which is used as IV for + * CBC-MAC, computed over the encrypted data (input of CTR + * encryption); the resulting CBC-MAC is written over 'cbcmac' on + * output. + * + * The data length MUST be a multiple of the block size. + * + * - `br_xxx_ctrcbc_ctr(const br_xxx_ctrcbc_keys *ctx, void *ctr, void *data, size_t len)` + * + * Perform CTR encryption or decryption of the provided data. The + * data is processed "in place" (the output data replaces the input + * data). A full block-sized counter is applied (i.e. for 128-bit + * blocks, the counter is incremented as a 128-bit value). The 'ctr' + * array contains the initial value for the counter (used in the + * first block), and it is updated with the new value after data + * processing. + * + * The data length MUST be a multiple of the block size. + * + * - `br_xxx_ctrcbc_mac(const br_xxx_ctrcbc_keys *ctx, void *cbcmac, const void *data, size_t len)` + * + * Compute CBC-MAC over the provided data. The IV for CBC-MAC is + * provided as 'cbcmac'; the output is written over the same array. + * The data itself is untouched. The data length MUST be a multiple + * of the block size. + * * * It shall be noted that the key expansion functions return `void`. If * the provided key length is not allowed, then there will be no error @@ -176,6 +243,41 @@ extern "C" { * * Pointer to the encryption/decryption function. * + * For combined CTR/CBC-MAC encryption, the `vtable` has a slightly + * different structure: + * + * - `context_size` + * + * The size (in bytes) of the context structure for subkeys. + * + * - `block_size` + * + * The cipher block size (in bytes). + * + * - `log_block_size` + * + * The base-2 logarithm of cipher block size (e.g. 4 for blocks + * of 16 bytes). + * + * - `init` + * + * Pointer to the key expansion function. + * + * - `encrypt` + * + * Pointer to the CTR encryption + CBC-MAC function. + * + * - `decrypt` + * + * Pointer to the CTR decryption + CBC-MAC function. + * + * - `ctr` + * + * Pointer to the CTR encryption/decryption function. + * + * - `mac` + * + * Pointer to the CBC-MAC function. * * For block cipher "`xxx`", static, constant instances of these * structures are defined, under the names: @@ -183,6 +285,7 @@ extern "C" { * - `br_xxx_cbcenc_vtable` * - `br_xxx_cbcdec_vtable` * - `br_xxx_ctr_vtable` + * - `br_xxx_ctrcbc_vtable` * * * ## Implemented Block Ciphers @@ -460,6 +563,132 @@ struct br_block_ctr_class_ { const void *iv, uint32_t cc, void *data, size_t len); }; +/** + * \brief Class type for combined CTR and CBC-MAC implementations. + * + * A `br_block_ctrcbc_class` instance points to the functions implementing + * a specific block cipher, when used in CTR mode for encrypting or + * decrypting data, along with CBC-MAC. + */ +typedef struct br_block_ctrcbc_class_ br_block_ctrcbc_class; +struct br_block_ctrcbc_class_ { + /** + * \brief Size (in bytes) of the context structure appropriate + * for containing subkeys. + */ + size_t context_size; + + /** + * \brief Size of individual blocks (in bytes). + */ + unsigned block_size; + + /** + * \brief Base-2 logarithm of the size of individual blocks, + * expressed in bytes. + */ + unsigned log_block_size; + + /** + * \brief Initialisation function. + * + * This function sets the `vtable` field in the context structure. + * The key length MUST be one of the key lengths supported by + * the implementation. + * + * \param ctx context structure to initialise. + * \param key secret key. + * \param key_len key length (in bytes). + */ + void (*init)(const br_block_ctrcbc_class **ctx, + const void *key, size_t key_len); + + /** + * \brief Run the CTR encryption + CBC-MAC. + * + * The `ctr` parameter points to the counter; its length shall + * be equal to the block size. It is updated by this function + * as encryption proceeds. + * + * The `cbcmac` parameter points to the IV for CBC-MAC. The MAC + * is computed over the encrypted data (output of CTR + * encryption). Its length shall be equal to the block size. The + * computed CBC-MAC value is written over the `cbcmac` array. + * + * The data to encrypt is updated "in place". Its length (`len` + * bytes) MUST be a multiple of the block size. + * + * \param ctx context structure (already initialised). + * \param ctr counter for CTR encryption (initial and final). + * \param cbcmac IV and output buffer for CBC-MAC. + * \param data data to encrypt. + * \param len data length (in bytes). + */ + void (*encrypt)(const br_block_ctrcbc_class *const *ctx, + void *ctr, void *cbcmac, void *data, size_t len); + + /** + * \brief Run the CTR decryption + CBC-MAC. + * + * The `ctr` parameter points to the counter; its length shall + * be equal to the block size. It is updated by this function + * as decryption proceeds. + * + * The `cbcmac` parameter points to the IV for CBC-MAC. The MAC + * is computed over the encrypted data (i.e. before CTR + * decryption). Its length shall be equal to the block size. The + * computed CBC-MAC value is written over the `cbcmac` array. + * + * The data to decrypt is updated "in place". Its length (`len` + * bytes) MUST be a multiple of the block size. + * + * \param ctx context structure (already initialised). + * \param ctr counter for CTR encryption (initial and final). + * \param cbcmac IV and output buffer for CBC-MAC. + * \param data data to decrypt. + * \param len data length (in bytes). + */ + void (*decrypt)(const br_block_ctrcbc_class *const *ctx, + void *ctr, void *cbcmac, void *data, size_t len); + + /** + * \brief Run the CTR encryption/decryption only. + * + * The `ctr` parameter points to the counter; its length shall + * be equal to the block size. It is updated by this function + * as decryption proceeds. + * + * The data to decrypt is updated "in place". Its length (`len` + * bytes) MUST be a multiple of the block size. + * + * \param ctx context structure (already initialised). + * \param ctr counter for CTR encryption (initial and final). + * \param data data to decrypt. + * \param len data length (in bytes). + */ + void (*ctr)(const br_block_ctrcbc_class *const *ctx, + void *ctr, void *data, size_t len); + + /** + * \brief Run the CBC-MAC only. + * + * The `cbcmac` parameter points to the IV for CBC-MAC. The MAC + * is computed over the encrypted data (i.e. before CTR + * decryption). Its length shall be equal to the block size. The + * computed CBC-MAC value is written over the `cbcmac` array. + * + * The data is unmodified. Its length (`len` bytes) MUST be a + * multiple of the block size. + * + * \param ctx context structure (already initialised). + * \param cbcmac IV and output buffer for CBC-MAC. + * \param data data to decrypt. + * \param len data length (in bytes). + */ + void (*mac)(const br_block_ctrcbc_class *const *ctx, + void *cbcmac, const void *data, size_t len); +}; + /* * Traditional, table-based AES implementation. It is fast, but uses * internal tables (in particular a 1 kB table for encryption, another @@ -517,6 +746,22 @@ typedef struct { #endif } br_aes_big_ctr_keys; +/** + * \brief Context for AES subkeys (`aes_big` implementation, CTR encryption + * and decryption + CBC-MAC). + * + * First field is a pointer to the vtable; it is set by the initialisation + * function. Other fields are not supposed to be accessed by user code. + */ +typedef struct { + /** \brief Pointer to vtable for this context. */ + const br_block_ctrcbc_class *vtable; +#ifndef BR_DOXYGEN_IGNORE + uint32_t skey[60]; + unsigned num_rounds; +#endif +} br_aes_big_ctrcbc_keys; + /** * \brief Class instance for AES CBC encryption (`aes_big` implementation). */ @@ -533,6 +778,12 @@ extern const br_block_cbcdec_class br_aes_big_cbcdec_vtable; */ extern const br_block_ctr_class br_aes_big_ctr_vtable; +/** + * \brief Class instance for AES CTR encryption/decryption + CBC-MAC + * (`aes_big` implementation). + */ +extern const br_block_ctrcbc_class br_aes_big_ctrcbc_vtable; + /** * \brief Context initialisation (key schedule) for AES CBC encryption * (`aes_big` implementation). @@ -566,6 +817,17 @@ void br_aes_big_cbcdec_init(br_aes_big_cbcdec_keys *ctx, void br_aes_big_ctr_init(br_aes_big_ctr_keys *ctx, const void *key, size_t len); +/** + * \brief Context initialisation (key schedule) for AES CTR + CBC-MAC + * (`aes_big` implementation). + * + * \param ctx context to initialise. + * \param key secret key. + * \param len secret key length (in bytes). + */ +void br_aes_big_ctrcbc_init(br_aes_big_ctrcbc_keys *ctx, + const void *key, size_t len); + /** * \brief CBC encryption with AES (`aes_big` implementation). * @@ -594,13 +856,59 @@ void br_aes_big_cbcdec_run(const br_aes_big_cbcdec_keys *ctx, void *iv, * \param ctx context (already initialised). * \param iv IV (constant, 12 bytes). * \param cc initial block counter value. - * \param data data to decrypt (updated). + * \param data data to encrypt or decrypt (updated). * \param len data length (in bytes). * \return new block counter value. */ uint32_t br_aes_big_ctr_run(const br_aes_big_ctr_keys *ctx, const void *iv, uint32_t cc, void *data, size_t len); +/** + * \brief CTR encryption + CBC-MAC with AES (`aes_big` implementation). + * + * \param ctx context (already initialised). + * \param ctr counter for CTR (16 bytes, updated). + * \param cbcmac IV for CBC-MAC (updated). + * \param data data to encrypt (updated). + * \param len data length (in bytes, MUST be a multiple of 16). + */ +void br_aes_big_ctrcbc_encrypt(const br_aes_big_ctrcbc_keys *ctx, + void *ctr, void *cbcmac, void *data, size_t len); + +/** + * \brief CTR decryption + CBC-MAC with AES (`aes_big` implementation). + * + * \param ctx context (already initialised). + * \param ctr counter for CTR (16 bytes, updated). + * \param cbcmac IV for CBC-MAC (updated). + * \param data data to decrypt (updated). + * \param len data length (in bytes, MUST be a multiple of 16). + */ +void br_aes_big_ctrcbc_decrypt(const br_aes_big_ctrcbc_keys *ctx, + void *ctr, void *cbcmac, void *data, size_t len); + +/** + * \brief CTR encryption/decryption with AES (`aes_big` implementation). + * + * \param ctx context (already initialised). + * \param ctr counter for CTR (16 bytes, updated). + * \param data data to MAC (updated). + * \param len data length (in bytes, MUST be a multiple of 16). + */ +void br_aes_big_ctrcbc_ctr(const br_aes_big_ctrcbc_keys *ctx, + void *ctr, void *data, size_t len); + +/** + * \brief CBC-MAC with AES (`aes_big` implementation). + * + * \param ctx context (already initialised). + * \param cbcmac IV for CBC-MAC (updated). + * \param data data to MAC (unmodified). + * \param len data length (in bytes, MUST be a multiple of 16). + */ +void br_aes_big_ctrcbc_mac(const br_aes_big_ctrcbc_keys *ctx, + void *cbcmac, const void *data, size_t len); + /* * AES implementation optimized for size. It is slower than the * traditional table-based AES implementation, but requires much less @@ -658,6 +966,22 @@ typedef struct { #endif } br_aes_small_ctr_keys; +/** + * \brief Context for AES subkeys (`aes_small` implementation, CTR encryption + * and decryption + CBC-MAC). + * + * First field is a pointer to the vtable; it is set by the initialisation + * function. Other fields are not supposed to be accessed by user code. + */ +typedef struct { + /** \brief Pointer to vtable for this context. */ + const br_block_ctrcbc_class *vtable; +#ifndef BR_DOXYGEN_IGNORE + uint32_t skey[60]; + unsigned num_rounds; +#endif +} br_aes_small_ctrcbc_keys; + /** * \brief Class instance for AES CBC encryption (`aes_small` implementation). */ @@ -674,6 +998,12 @@ extern const br_block_cbcdec_class br_aes_small_cbcdec_vtable; */ extern const br_block_ctr_class br_aes_small_ctr_vtable; +/** + * \brief Class instance for AES CTR encryption/decryption + CBC-MAC + * (`aes_small` implementation). + */ +extern const br_block_ctrcbc_class br_aes_small_ctrcbc_vtable; + /** * \brief Context initialisation (key schedule) for AES CBC encryption * (`aes_small` implementation). @@ -707,6 +1037,17 @@ void br_aes_small_cbcdec_init(br_aes_small_cbcdec_keys *ctx, void br_aes_small_ctr_init(br_aes_small_ctr_keys *ctx, const void *key, size_t len); +/** + * \brief Context initialisation (key schedule) for AES CTR + CBC-MAC + * (`aes_small` implementation). + * + * \param ctx context to initialise. + * \param key secret key. + * \param len secret key length (in bytes). + */ +void br_aes_small_ctrcbc_init(br_aes_small_ctrcbc_keys *ctx, + const void *key, size_t len); + /** * \brief CBC encryption with AES (`aes_small` implementation). * @@ -742,6 +1083,52 @@ void br_aes_small_cbcdec_run(const br_aes_small_cbcdec_keys *ctx, void *iv, uint32_t br_aes_small_ctr_run(const br_aes_small_ctr_keys *ctx, const void *iv, uint32_t cc, void *data, size_t len); +/** + * \brief CTR encryption + CBC-MAC with AES (`aes_small` implementation). + * + * \param ctx context (already initialised). + * \param ctr counter for CTR (16 bytes, updated). + * \param cbcmac IV for CBC-MAC (updated). + * \param data data to encrypt (updated). + * \param len data length (in bytes, MUST be a multiple of 16). + */ +void br_aes_small_ctrcbc_encrypt(const br_aes_small_ctrcbc_keys *ctx, + void *ctr, void *cbcmac, void *data, size_t len); + +/** + * \brief CTR decryption + CBC-MAC with AES (`aes_small` implementation). + * + * \param ctx context (already initialised). + * \param ctr counter for CTR (16 bytes, updated). + * \param cbcmac IV for CBC-MAC (updated). + * \param data data to decrypt (updated). + * \param len data length (in bytes, MUST be a multiple of 16). + */ +void br_aes_small_ctrcbc_decrypt(const br_aes_small_ctrcbc_keys *ctx, + void *ctr, void *cbcmac, void *data, size_t len); + +/** + * \brief CTR encryption/decryption with AES (`aes_small` implementation). + * + * \param ctx context (already initialised). + * \param ctr counter for CTR (16 bytes, updated). + * \param data data to MAC (updated). + * \param len data length (in bytes, MUST be a multiple of 16). + */ +void br_aes_small_ctrcbc_ctr(const br_aes_small_ctrcbc_keys *ctx, + void *ctr, void *data, size_t len); + +/** + * \brief CBC-MAC with AES (`aes_small` implementation). + * + * \param ctx context (already initialised). + * \param cbcmac IV for CBC-MAC (updated). + * \param data data to MAC (unmodified). + * \param len data length (in bytes, MUST be a multiple of 16). + */ +void br_aes_small_ctrcbc_mac(const br_aes_small_ctrcbc_keys *ctx, + void *cbcmac, const void *data, size_t len); + /* * Constant-time AES implementation. Its size is similar to that of * 'aes_big', and its performance is similar to that of 'aes_small' (faster @@ -798,6 +1185,22 @@ typedef struct { #endif } br_aes_ct_ctr_keys; +/** + * \brief Context for AES subkeys (`aes_ct` implementation, CTR encryption + * and decryption + CBC-MAC). + * + * First field is a pointer to the vtable; it is set by the initialisation + * function. Other fields are not supposed to be accessed by user code. + */ +typedef struct { + /** \brief Pointer to vtable for this context. */ + const br_block_ctrcbc_class *vtable; +#ifndef BR_DOXYGEN_IGNORE + uint32_t skey[60]; + unsigned num_rounds; +#endif +} br_aes_ct_ctrcbc_keys; + /** * \brief Class instance for AES CBC encryption (`aes_ct` implementation). */ @@ -814,6 +1217,12 @@ extern const br_block_cbcdec_class br_aes_ct_cbcdec_vtable; */ extern const br_block_ctr_class br_aes_ct_ctr_vtable; +/** + * \brief Class instance for AES CTR encryption/decryption + CBC-MAC + * (`aes_ct` implementation). + */ +extern const br_block_ctrcbc_class br_aes_ct_ctrcbc_vtable; + /** * \brief Context initialisation (key schedule) for AES CBC encryption * (`aes_ct` implementation). @@ -847,6 +1256,17 @@ void br_aes_ct_cbcdec_init(br_aes_ct_cbcdec_keys *ctx, void br_aes_ct_ctr_init(br_aes_ct_ctr_keys *ctx, const void *key, size_t len); +/** + * \brief Context initialisation (key schedule) for AES CTR + CBC-MAC + * (`aes_ct` implementation). + * + * \param ctx context to initialise. + * \param key secret key. + * \param len secret key length (in bytes). + */ +void br_aes_ct_ctrcbc_init(br_aes_ct_ctrcbc_keys *ctx, + const void *key, size_t len); + /** * \brief CBC encryption with AES (`aes_ct` implementation). * @@ -882,6 +1302,52 @@ void br_aes_ct_cbcdec_run(const br_aes_ct_cbcdec_keys *ctx, void *iv, uint32_t br_aes_ct_ctr_run(const br_aes_ct_ctr_keys *ctx, const void *iv, uint32_t cc, void *data, size_t len); +/** + * \brief CTR encryption + CBC-MAC with AES (`aes_ct` implementation). + * + * \param ctx context (already initialised). + * \param ctr counter for CTR (16 bytes, updated). + * \param cbcmac IV for CBC-MAC (updated). + * \param data data to encrypt (updated). + * \param len data length (in bytes, MUST be a multiple of 16). + */ +void br_aes_ct_ctrcbc_encrypt(const br_aes_ct_ctrcbc_keys *ctx, + void *ctr, void *cbcmac, void *data, size_t len); + +/** + * \brief CTR decryption + CBC-MAC with AES (`aes_ct` implementation). + * + * \param ctx context (already initialised). + * \param ctr counter for CTR (16 bytes, updated). + * \param cbcmac IV for CBC-MAC (updated). + * \param data data to decrypt (updated). + * \param len data length (in bytes, MUST be a multiple of 16). + */ +void br_aes_ct_ctrcbc_decrypt(const br_aes_ct_ctrcbc_keys *ctx, + void *ctr, void *cbcmac, void *data, size_t len); + +/** + * \brief CTR encryption/decryption with AES (`aes_ct` implementation). + * + * \param ctx context (already initialised). + * \param ctr counter for CTR (16 bytes, updated). + * \param data data to MAC (updated). + * \param len data length (in bytes, MUST be a multiple of 16). + */ +void br_aes_ct_ctrcbc_ctr(const br_aes_ct_ctrcbc_keys *ctx, + void *ctr, void *data, size_t len); + +/** + * \brief CBC-MAC with AES (`aes_ct` implementation). + * + * \param ctx context (already initialised). + * \param cbcmac IV for CBC-MAC (updated). + * \param data data to MAC (unmodified). + * \param len data length (in bytes, MUST be a multiple of 16). + */ +void br_aes_ct_ctrcbc_mac(const br_aes_ct_ctrcbc_keys *ctx, + void *cbcmac, const void *data, size_t len); + /* * 64-bit constant-time AES implementation. It is similar to 'aes_ct' * but uses 64-bit registers, making it about twice faster than 'aes_ct' @@ -940,6 +1406,22 @@ typedef struct { #endif } br_aes_ct64_ctr_keys; +/** + * \brief Context for AES subkeys (`aes_ct64` implementation, CTR encryption + * and decryption + CBC-MAC). + * + * First field is a pointer to the vtable; it is set by the initialisation + * function. Other fields are not supposed to be accessed by user code. + */ +typedef struct { + /** \brief Pointer to vtable for this context. */ + const br_block_ctrcbc_class *vtable; +#ifndef BR_DOXYGEN_IGNORE + uint64_t skey[30]; + unsigned num_rounds; +#endif +} br_aes_ct64_ctrcbc_keys; + /** * \brief Class instance for AES CBC encryption (`aes_ct64` implementation). */ @@ -956,6 +1438,12 @@ extern const br_block_cbcdec_class br_aes_ct64_cbcdec_vtable; */ extern const br_block_ctr_class br_aes_ct64_ctr_vtable; +/** + * \brief Class instance for AES CTR encryption/decryption + CBC-MAC + * (`aes_ct64` implementation). + */ +extern const br_block_ctrcbc_class br_aes_ct64_ctrcbc_vtable; + /** * \brief Context initialisation (key schedule) for AES CBC encryption * (`aes_ct64` implementation). @@ -989,6 +1477,17 @@ void br_aes_ct64_cbcdec_init(br_aes_ct64_cbcdec_keys *ctx, void br_aes_ct64_ctr_init(br_aes_ct64_ctr_keys *ctx, const void *key, size_t len); +/** + * \brief Context initialisation (key schedule) for AES CTR + CBC-MAC + * (`aes_ct64` implementation). + * + * \param ctx context to initialise. + * \param key secret key. + * \param len secret key length (in bytes). + */ +void br_aes_ct64_ctrcbc_init(br_aes_ct64_ctrcbc_keys *ctx, + const void *key, size_t len); + /** * \brief CBC encryption with AES (`aes_ct64` implementation). * @@ -1024,6 +1523,52 @@ void br_aes_ct64_cbcdec_run(const br_aes_ct64_cbcdec_keys *ctx, void *iv, uint32_t br_aes_ct64_ctr_run(const br_aes_ct64_ctr_keys *ctx, const void *iv, uint32_t cc, void *data, size_t len); +/** + * \brief CTR encryption + CBC-MAC with AES (`aes_ct64` implementation). + * + * \param ctx context (already initialised). + * \param ctr counter for CTR (16 bytes, updated). + * \param cbcmac IV for CBC-MAC (updated). + * \param data data to encrypt (updated). + * \param len data length (in bytes, MUST be a multiple of 16). + */ +void br_aes_ct64_ctrcbc_encrypt(const br_aes_ct64_ctrcbc_keys *ctx, + void *ctr, void *cbcmac, void *data, size_t len); + +/** + * \brief CTR decryption + CBC-MAC with AES (`aes_ct64` implementation). + * + * \param ctx context (already initialised). + * \param ctr counter for CTR (16 bytes, updated). + * \param cbcmac IV for CBC-MAC (updated). + * \param data data to decrypt (updated). + * \param len data length (in bytes, MUST be a multiple of 16). + */ +void br_aes_ct64_ctrcbc_decrypt(const br_aes_ct64_ctrcbc_keys *ctx, + void *ctr, void *cbcmac, void *data, size_t len); + +/** + * \brief CTR encryption/decryption with AES (`aes_ct64` implementation). + * + * \param ctx context (already initialised). + * \param ctr counter for CTR (16 bytes, updated). + * \param data data to MAC (updated). + * \param len data length (in bytes, MUST be a multiple of 16). + */ +void br_aes_ct64_ctrcbc_ctr(const br_aes_ct64_ctrcbc_keys *ctx, + void *ctr, void *data, size_t len); + +/** + * \brief CBC-MAC with AES (`aes_ct64` implementation). + * + * \param ctx context (already initialised). + * \param cbcmac IV for CBC-MAC (updated). + * \param data data to MAC (unmodified). + * \param len data length (in bytes, MUST be a multiple of 16). + */ +void br_aes_ct64_ctrcbc_mac(const br_aes_ct64_ctrcbc_keys *ctx, + void *cbcmac, const void *data, size_t len); + /* * AES implementation using AES-NI opcodes (x86 platform). */ @@ -1083,6 +1628,24 @@ typedef struct { #endif } br_aes_x86ni_ctr_keys; +/** + * \brief Context for AES subkeys (`aes_x86ni` implementation, CTR encryption + * and decryption + CBC-MAC). + * + * First field is a pointer to the vtable; it is set by the initialisation + * function. Other fields are not supposed to be accessed by user code. + */ +typedef struct { + /** \brief Pointer to vtable for this context. */ + const br_block_ctrcbc_class *vtable; +#ifndef BR_DOXYGEN_IGNORE + union { + unsigned char skni[16 * 15]; + } skey; + unsigned num_rounds; +#endif +} br_aes_x86ni_ctrcbc_keys; + /** * \brief Class instance for AES CBC encryption (`aes_x86ni` implementation). * @@ -1111,6 +1674,16 @@ extern const br_block_cbcdec_class br_aes_x86ni_cbcdec_vtable; */ extern const br_block_ctr_class br_aes_x86ni_ctr_vtable; +/** + * \brief Class instance for AES CTR encryption/decryption + CBC-MAC + * (`aes_x86ni` implementation). + * + * Since this implementation might be omitted from the library, or the + * AES opcode unavailable on the current CPU, a pointer to this class + * instance should be obtained through `br_aes_x86ni_ctrcbc_get_vtable()`. + */ +extern const br_block_ctrcbc_class br_aes_x86ni_ctrcbc_vtable; + /** * \brief Context initialisation (key schedule) for AES CBC encryption * (`aes_x86ni` implementation). @@ -1144,6 +1717,17 @@ void br_aes_x86ni_cbcdec_init(br_aes_x86ni_cbcdec_keys *ctx, void br_aes_x86ni_ctr_init(br_aes_x86ni_ctr_keys *ctx, const void *key, size_t len); +/** + * \brief Context initialisation (key schedule) for AES CTR + CBC-MAC + * (`aes_x86ni` implementation). + * + * \param ctx context to initialise. + * \param key secret key. + * \param len secret key length (in bytes). + */ +void br_aes_x86ni_ctrcbc_init(br_aes_x86ni_ctrcbc_keys *ctx, + const void *key, size_t len); + /** * \brief CBC encryption with AES (`aes_x86ni` implementation). * @@ -1179,6 +1763,52 @@ void br_aes_x86ni_cbcdec_run(const br_aes_x86ni_cbcdec_keys *ctx, void *iv, uint32_t br_aes_x86ni_ctr_run(const br_aes_x86ni_ctr_keys *ctx, const void *iv, uint32_t cc, void *data, size_t len); +/** + * \brief CTR encryption + CBC-MAC with AES (`aes_x86ni` implementation). + * + * \param ctx context (already initialised). + * \param ctr counter for CTR (16 bytes, updated). + * \param cbcmac IV for CBC-MAC (updated). + * \param data data to encrypt (updated). + * \param len data length (in bytes, MUST be a multiple of 16). + */ +void br_aes_x86ni_ctrcbc_encrypt(const br_aes_x86ni_ctrcbc_keys *ctx, + void *ctr, void *cbcmac, void *data, size_t len); + +/** + * \brief CTR decryption + CBC-MAC with AES (`aes_x86ni` implementation). + * + * \param ctx context (already initialised). + * \param ctr counter for CTR (16 bytes, updated). + * \param cbcmac IV for CBC-MAC (updated). + * \param data data to decrypt (updated). + * \param len data length (in bytes, MUST be a multiple of 16). + */ +void br_aes_x86ni_ctrcbc_decrypt(const br_aes_x86ni_ctrcbc_keys *ctx, + void *ctr, void *cbcmac, void *data, size_t len); + +/** + * \brief CTR encryption/decryption with AES (`aes_x86ni` implementation). + * + * \param ctx context (already initialised). + * \param ctr counter for CTR (16 bytes, updated). + * \param data data to MAC (updated). + * \param len data length (in bytes, MUST be a multiple of 16). + */ +void br_aes_x86ni_ctrcbc_ctr(const br_aes_x86ni_ctrcbc_keys *ctx, + void *ctr, void *data, size_t len); + +/** + * \brief CBC-MAC with AES (`aes_x86ni` implementation). + * + * \param ctx context (already initialised). + * \param cbcmac IV for CBC-MAC (updated). + * \param data data to MAC (unmodified). + * \param len data length (in bytes, MUST be a multiple of 16). + */ +void br_aes_x86ni_ctrcbc_mac(const br_aes_x86ni_ctrcbc_keys *ctx, + void *cbcmac, const void *data, size_t len); + /** * \brief Obtain the `aes_x86ni` AES-CBC (encryption) implementation, if * available. @@ -1188,7 +1818,7 @@ uint32_t br_aes_x86ni_ctr_run(const br_aes_x86ni_ctr_keys *ctx, * opcodes are available on the currently running CPU. If either of * these conditions is not met, then this function returns `NULL`. * - * \return the `aes_x868ni` AES-CBC (encryption) implementation, or `NULL`. + * \return the `aes_x86ni` AES-CBC (encryption) implementation, or `NULL`. */ const br_block_cbcenc_class *br_aes_x86ni_cbcenc_get_vtable(void); @@ -1201,7 +1831,7 @@ const br_block_cbcenc_class *br_aes_x86ni_cbcenc_get_vtable(void); * opcodes are available on the currently running CPU. If either of * these conditions is not met, then this function returns `NULL`. * - * \return the `aes_x868ni` AES-CBC (decryption) implementation, or `NULL`. + * \return the `aes_x86ni` AES-CBC (decryption) implementation, or `NULL`. */ const br_block_cbcdec_class *br_aes_x86ni_cbcdec_get_vtable(void); @@ -1213,10 +1843,23 @@ const br_block_cbcdec_class *br_aes_x86ni_cbcdec_get_vtable(void); * opcodes are available on the currently running CPU. If either of * these conditions is not met, then this function returns `NULL`. * - * \return the `aes_x868ni` AES-CTR implementation, or `NULL`. + * \return the `aes_x86ni` AES-CTR implementation, or `NULL`. */ const br_block_ctr_class *br_aes_x86ni_ctr_get_vtable(void); +/** + * \brief Obtain the `aes_x86ni` AES-CTR + CBC-MAC implementation, if + * available. + * + * This function returns a pointer to `br_aes_x86ni_ctrcbc_vtable`, if + * that implementation was compiled in the library _and_ the x86 AES + * opcodes are available on the currently running CPU. If either of + * these conditions is not met, then this function returns `NULL`. + * + * \return the `aes_x86ni` AES-CTR implementation, or `NULL`. + */ +const br_block_ctrcbc_class *br_aes_x86ni_ctrcbc_get_vtable(void); + /* * AES implementation using POWER8 opcodes. */ @@ -1452,6 +2095,22 @@ typedef union { br_aes_pwr8_ctr_keys c_pwr8; } br_aes_gen_ctr_keys; +/** + * \brief Aggregate structure large enough to be used as context for + * subkeys (CTR encryption/decryption + CBC-MAC) for all AES implementations. + */ +typedef union { + const br_block_ctrcbc_class *vtable; + br_aes_big_ctrcbc_keys c_big; + br_aes_small_ctrcbc_keys c_small; + br_aes_ct_ctrcbc_keys c_ct; + br_aes_ct64_ctrcbc_keys c_ct64; + /* FIXME + br_aes_x86ni_ctrcbc_keys c_x86ni; + br_aes_pwr8_ctrcbc_keys c_pwr8; + */ +} br_aes_gen_ctrcbc_keys; + /* * Traditional, table-based implementation for DES/3DES. Since tables are * used, cache-timing attacks are conceptually possible. diff --git a/mk/Rules.mk b/mk/Rules.mk index 21a58ce..2a281ff 100644 --- a/mk/Rules.mk +++ b/mk/Rules.mk @@ -1,6 +1,6 @@ # Automatically generated rules. Use 'mkrules.sh' to modify/regenerate. -OBJ = $(OBJDIR)$Psettings$O $(OBJDIR)$Pgcm$O $(OBJDIR)$Pccopy$O $(OBJDIR)$Pdec16be$O $(OBJDIR)$Pdec16le$O $(OBJDIR)$Pdec32be$O $(OBJDIR)$Pdec32le$O $(OBJDIR)$Pdec64be$O $(OBJDIR)$Pdec64le$O $(OBJDIR)$Penc16be$O $(OBJDIR)$Penc16le$O $(OBJDIR)$Penc32be$O $(OBJDIR)$Penc32le$O $(OBJDIR)$Penc64be$O $(OBJDIR)$Penc64le$O $(OBJDIR)$Ppemdec$O $(OBJDIR)$Pec_all_m15$O $(OBJDIR)$Pec_all_m31$O $(OBJDIR)$Pec_c25519_i15$O $(OBJDIR)$Pec_c25519_i31$O $(OBJDIR)$Pec_c25519_m15$O $(OBJDIR)$Pec_c25519_m31$O $(OBJDIR)$Pec_curve25519$O $(OBJDIR)$Pec_default$O $(OBJDIR)$Pec_p256_m15$O $(OBJDIR)$Pec_p256_m31$O $(OBJDIR)$Pec_prime_i15$O $(OBJDIR)$Pec_prime_i31$O $(OBJDIR)$Pec_secp256r1$O $(OBJDIR)$Pec_secp384r1$O $(OBJDIR)$Pec_secp521r1$O $(OBJDIR)$Pecdsa_atr$O $(OBJDIR)$Pecdsa_default_sign_asn1$O $(OBJDIR)$Pecdsa_default_sign_raw$O $(OBJDIR)$Pecdsa_default_vrfy_asn1$O $(OBJDIR)$Pecdsa_default_vrfy_raw$O $(OBJDIR)$Pecdsa_i15_bits$O $(OBJDIR)$Pecdsa_i15_sign_asn1$O $(OBJDIR)$Pecdsa_i15_sign_raw$O $(OBJDIR)$Pecdsa_i15_vrfy_asn1$O $(OBJDIR)$Pecdsa_i15_vrfy_raw$O $(OBJDIR)$Pecdsa_i31_bits$O $(OBJDIR)$Pecdsa_i31_sign_asn1$O $(OBJDIR)$Pecdsa_i31_sign_raw$O $(OBJDIR)$Pecdsa_i31_vrfy_asn1$O $(OBJDIR)$Pecdsa_i31_vrfy_raw$O $(OBJDIR)$Pecdsa_rta$O $(OBJDIR)$Pdig_oid$O $(OBJDIR)$Pdig_size$O $(OBJDIR)$Pghash_ctmul$O $(OBJDIR)$Pghash_ctmul32$O $(OBJDIR)$Pghash_ctmul64$O $(OBJDIR)$Pghash_pclmul$O $(OBJDIR)$Pghash_pwr8$O $(OBJDIR)$Pmd5$O $(OBJDIR)$Pmd5sha1$O $(OBJDIR)$Pmultihash$O $(OBJDIR)$Psha1$O $(OBJDIR)$Psha2big$O $(OBJDIR)$Psha2small$O $(OBJDIR)$Pi15_add$O $(OBJDIR)$Pi15_bitlen$O $(OBJDIR)$Pi15_decmod$O $(OBJDIR)$Pi15_decode$O $(OBJDIR)$Pi15_decred$O $(OBJDIR)$Pi15_encode$O $(OBJDIR)$Pi15_fmont$O $(OBJDIR)$Pi15_iszero$O $(OBJDIR)$Pi15_modpow$O $(OBJDIR)$Pi15_modpow2$O $(OBJDIR)$Pi15_montmul$O $(OBJDIR)$Pi15_mulacc$O $(OBJDIR)$Pi15_muladd$O $(OBJDIR)$Pi15_ninv15$O $(OBJDIR)$Pi15_reduce$O $(OBJDIR)$Pi15_rshift$O $(OBJDIR)$Pi15_sub$O $(OBJDIR)$Pi15_tmont$O $(OBJDIR)$Pi31_add$O $(OBJDIR)$Pi31_bitlen$O $(OBJDIR)$Pi31_decmod$O $(OBJDIR)$Pi31_decode$O $(OBJDIR)$Pi31_decred$O $(OBJDIR)$Pi31_encode$O $(OBJDIR)$Pi31_fmont$O $(OBJDIR)$Pi31_iszero$O $(OBJDIR)$Pi31_modpow$O $(OBJDIR)$Pi31_modpow2$O $(OBJDIR)$Pi31_montmul$O $(OBJDIR)$Pi31_mulacc$O $(OBJDIR)$Pi31_muladd$O $(OBJDIR)$Pi31_ninv31$O $(OBJDIR)$Pi31_reduce$O $(OBJDIR)$Pi31_rshift$O $(OBJDIR)$Pi31_sub$O $(OBJDIR)$Pi31_tmont$O $(OBJDIR)$Pi32_add$O $(OBJDIR)$Pi32_bitlen$O $(OBJDIR)$Pi32_decmod$O $(OBJDIR)$Pi32_decode$O $(OBJDIR)$Pi32_decred$O $(OBJDIR)$Pi32_div32$O $(OBJDIR)$Pi32_encode$O $(OBJDIR)$Pi32_fmont$O $(OBJDIR)$Pi32_iszero$O $(OBJDIR)$Pi32_modpow$O $(OBJDIR)$Pi32_montmul$O $(OBJDIR)$Pi32_mulacc$O $(OBJDIR)$Pi32_muladd$O $(OBJDIR)$Pi32_ninv32$O $(OBJDIR)$Pi32_reduce$O $(OBJDIR)$Pi32_sub$O $(OBJDIR)$Pi32_tmont$O $(OBJDIR)$Pi62_modpow2$O $(OBJDIR)$Phmac$O $(OBJDIR)$Phmac_ct$O $(OBJDIR)$Phmac_drbg$O $(OBJDIR)$Psysrng$O $(OBJDIR)$Prsa_default_pkcs1_sign$O $(OBJDIR)$Prsa_default_pkcs1_vrfy$O $(OBJDIR)$Prsa_default_priv$O $(OBJDIR)$Prsa_default_pub$O $(OBJDIR)$Prsa_i15_pkcs1_sign$O $(OBJDIR)$Prsa_i15_pkcs1_vrfy$O $(OBJDIR)$Prsa_i15_priv$O $(OBJDIR)$Prsa_i15_pub$O $(OBJDIR)$Prsa_i31_pkcs1_sign$O $(OBJDIR)$Prsa_i31_pkcs1_vrfy$O $(OBJDIR)$Prsa_i31_priv$O $(OBJDIR)$Prsa_i31_pub$O $(OBJDIR)$Prsa_i32_pkcs1_sign$O $(OBJDIR)$Prsa_i32_pkcs1_vrfy$O $(OBJDIR)$Prsa_i32_priv$O $(OBJDIR)$Prsa_i32_pub$O $(OBJDIR)$Prsa_i62_pkcs1_sign$O $(OBJDIR)$Prsa_i62_pkcs1_vrfy$O $(OBJDIR)$Prsa_i62_priv$O $(OBJDIR)$Prsa_i62_pub$O $(OBJDIR)$Prsa_pkcs1_sig_pad$O $(OBJDIR)$Prsa_pkcs1_sig_unpad$O $(OBJDIR)$Prsa_ssl_decrypt$O $(OBJDIR)$Pprf$O $(OBJDIR)$Pprf_md5sha1$O $(OBJDIR)$Pprf_sha256$O $(OBJDIR)$Pprf_sha384$O $(OBJDIR)$Pssl_ccert_single_ec$O $(OBJDIR)$Pssl_ccert_single_rsa$O $(OBJDIR)$Pssl_client$O $(OBJDIR)$Pssl_client_default_rsapub$O $(OBJDIR)$Pssl_client_full$O $(OBJDIR)$Pssl_engine$O $(OBJDIR)$Pssl_engine_default_aescbc$O $(OBJDIR)$Pssl_engine_default_aesgcm$O $(OBJDIR)$Pssl_engine_default_chapol$O $(OBJDIR)$Pssl_engine_default_descbc$O $(OBJDIR)$Pssl_engine_default_ec$O $(OBJDIR)$Pssl_engine_default_ecdsa$O $(OBJDIR)$Pssl_engine_default_rsavrfy$O $(OBJDIR)$Pssl_hashes$O $(OBJDIR)$Pssl_hs_client$O $(OBJDIR)$Pssl_hs_server$O $(OBJDIR)$Pssl_io$O $(OBJDIR)$Pssl_keyexport$O $(OBJDIR)$Pssl_lru$O $(OBJDIR)$Pssl_rec_cbc$O $(OBJDIR)$Pssl_rec_chapol$O $(OBJDIR)$Pssl_rec_gcm$O $(OBJDIR)$Pssl_scert_single_ec$O $(OBJDIR)$Pssl_scert_single_rsa$O $(OBJDIR)$Pssl_server$O $(OBJDIR)$Pssl_server_full_ec$O $(OBJDIR)$Pssl_server_full_rsa$O $(OBJDIR)$Pssl_server_mine2c$O $(OBJDIR)$Pssl_server_mine2g$O $(OBJDIR)$Pssl_server_minf2c$O $(OBJDIR)$Pssl_server_minf2g$O $(OBJDIR)$Pssl_server_minr2g$O $(OBJDIR)$Pssl_server_minu2g$O $(OBJDIR)$Pssl_server_minv2g$O $(OBJDIR)$Paes_big_cbcdec$O $(OBJDIR)$Paes_big_cbcenc$O $(OBJDIR)$Paes_big_ctr$O $(OBJDIR)$Paes_big_dec$O $(OBJDIR)$Paes_big_enc$O $(OBJDIR)$Paes_common$O $(OBJDIR)$Paes_ct$O $(OBJDIR)$Paes_ct64$O $(OBJDIR)$Paes_ct64_cbcdec$O $(OBJDIR)$Paes_ct64_cbcenc$O $(OBJDIR)$Paes_ct64_ctr$O $(OBJDIR)$Paes_ct64_dec$O $(OBJDIR)$Paes_ct64_enc$O $(OBJDIR)$Paes_ct_cbcdec$O $(OBJDIR)$Paes_ct_cbcenc$O $(OBJDIR)$Paes_ct_ctr$O $(OBJDIR)$Paes_ct_dec$O $(OBJDIR)$Paes_ct_enc$O $(OBJDIR)$Paes_pwr8$O $(OBJDIR)$Paes_pwr8_cbcdec$O $(OBJDIR)$Paes_pwr8_cbcenc$O $(OBJDIR)$Paes_pwr8_ctr$O $(OBJDIR)$Paes_small_cbcdec$O $(OBJDIR)$Paes_small_cbcenc$O $(OBJDIR)$Paes_small_ctr$O $(OBJDIR)$Paes_small_dec$O $(OBJDIR)$Paes_small_enc$O $(OBJDIR)$Paes_x86ni$O $(OBJDIR)$Paes_x86ni_cbcdec$O $(OBJDIR)$Paes_x86ni_cbcenc$O $(OBJDIR)$Paes_x86ni_ctr$O $(OBJDIR)$Pchacha20_ct$O $(OBJDIR)$Pchacha20_sse2$O $(OBJDIR)$Pdes_ct$O $(OBJDIR)$Pdes_ct_cbcdec$O $(OBJDIR)$Pdes_ct_cbcenc$O $(OBJDIR)$Pdes_support$O $(OBJDIR)$Pdes_tab$O $(OBJDIR)$Pdes_tab_cbcdec$O $(OBJDIR)$Pdes_tab_cbcenc$O $(OBJDIR)$Ppoly1305_ctmul$O $(OBJDIR)$Ppoly1305_ctmul32$O $(OBJDIR)$Ppoly1305_ctmulq$O $(OBJDIR)$Ppoly1305_i15$O $(OBJDIR)$Pskey_decoder$O $(OBJDIR)$Px509_decoder$O $(OBJDIR)$Px509_knownkey$O $(OBJDIR)$Px509_minimal$O $(OBJDIR)$Px509_minimal_full$O +OBJ = $(OBJDIR)$Psettings$O $(OBJDIR)$Pccm$O $(OBJDIR)$Peax$O $(OBJDIR)$Pgcm$O $(OBJDIR)$Pccopy$O $(OBJDIR)$Pdec16be$O $(OBJDIR)$Pdec16le$O $(OBJDIR)$Pdec32be$O $(OBJDIR)$Pdec32le$O $(OBJDIR)$Pdec64be$O $(OBJDIR)$Pdec64le$O $(OBJDIR)$Penc16be$O $(OBJDIR)$Penc16le$O $(OBJDIR)$Penc32be$O $(OBJDIR)$Penc32le$O $(OBJDIR)$Penc64be$O $(OBJDIR)$Penc64le$O $(OBJDIR)$Ppemdec$O $(OBJDIR)$Pec_all_m15$O $(OBJDIR)$Pec_all_m31$O $(OBJDIR)$Pec_c25519_i15$O $(OBJDIR)$Pec_c25519_i31$O $(OBJDIR)$Pec_c25519_m15$O $(OBJDIR)$Pec_c25519_m31$O $(OBJDIR)$Pec_curve25519$O $(OBJDIR)$Pec_default$O $(OBJDIR)$Pec_p256_m15$O $(OBJDIR)$Pec_p256_m31$O $(OBJDIR)$Pec_prime_i15$O $(OBJDIR)$Pec_prime_i31$O $(OBJDIR)$Pec_secp256r1$O $(OBJDIR)$Pec_secp384r1$O $(OBJDIR)$Pec_secp521r1$O $(OBJDIR)$Pecdsa_atr$O $(OBJDIR)$Pecdsa_default_sign_asn1$O $(OBJDIR)$Pecdsa_default_sign_raw$O $(OBJDIR)$Pecdsa_default_vrfy_asn1$O $(OBJDIR)$Pecdsa_default_vrfy_raw$O $(OBJDIR)$Pecdsa_i15_bits$O $(OBJDIR)$Pecdsa_i15_sign_asn1$O $(OBJDIR)$Pecdsa_i15_sign_raw$O $(OBJDIR)$Pecdsa_i15_vrfy_asn1$O $(OBJDIR)$Pecdsa_i15_vrfy_raw$O $(OBJDIR)$Pecdsa_i31_bits$O $(OBJDIR)$Pecdsa_i31_sign_asn1$O $(OBJDIR)$Pecdsa_i31_sign_raw$O $(OBJDIR)$Pecdsa_i31_vrfy_asn1$O $(OBJDIR)$Pecdsa_i31_vrfy_raw$O $(OBJDIR)$Pecdsa_rta$O $(OBJDIR)$Pdig_oid$O $(OBJDIR)$Pdig_size$O $(OBJDIR)$Pghash_ctmul$O $(OBJDIR)$Pghash_ctmul32$O $(OBJDIR)$Pghash_ctmul64$O $(OBJDIR)$Pghash_pclmul$O $(OBJDIR)$Pghash_pwr8$O $(OBJDIR)$Pmd5$O $(OBJDIR)$Pmd5sha1$O $(OBJDIR)$Pmultihash$O $(OBJDIR)$Psha1$O $(OBJDIR)$Psha2big$O $(OBJDIR)$Psha2small$O $(OBJDIR)$Pi15_add$O $(OBJDIR)$Pi15_bitlen$O $(OBJDIR)$Pi15_decmod$O $(OBJDIR)$Pi15_decode$O $(OBJDIR)$Pi15_decred$O $(OBJDIR)$Pi15_encode$O $(OBJDIR)$Pi15_fmont$O $(OBJDIR)$Pi15_iszero$O $(OBJDIR)$Pi15_modpow$O $(OBJDIR)$Pi15_modpow2$O $(OBJDIR)$Pi15_montmul$O $(OBJDIR)$Pi15_mulacc$O $(OBJDIR)$Pi15_muladd$O $(OBJDIR)$Pi15_ninv15$O $(OBJDIR)$Pi15_reduce$O $(OBJDIR)$Pi15_rshift$O $(OBJDIR)$Pi15_sub$O $(OBJDIR)$Pi15_tmont$O $(OBJDIR)$Pi31_add$O $(OBJDIR)$Pi31_bitlen$O $(OBJDIR)$Pi31_decmod$O $(OBJDIR)$Pi31_decode$O $(OBJDIR)$Pi31_decred$O $(OBJDIR)$Pi31_encode$O $(OBJDIR)$Pi31_fmont$O $(OBJDIR)$Pi31_iszero$O $(OBJDIR)$Pi31_modpow$O $(OBJDIR)$Pi31_modpow2$O $(OBJDIR)$Pi31_montmul$O $(OBJDIR)$Pi31_mulacc$O $(OBJDIR)$Pi31_muladd$O $(OBJDIR)$Pi31_ninv31$O $(OBJDIR)$Pi31_reduce$O $(OBJDIR)$Pi31_rshift$O $(OBJDIR)$Pi31_sub$O $(OBJDIR)$Pi31_tmont$O $(OBJDIR)$Pi32_add$O $(OBJDIR)$Pi32_bitlen$O $(OBJDIR)$Pi32_decmod$O $(OBJDIR)$Pi32_decode$O $(OBJDIR)$Pi32_decred$O $(OBJDIR)$Pi32_div32$O $(OBJDIR)$Pi32_encode$O $(OBJDIR)$Pi32_fmont$O $(OBJDIR)$Pi32_iszero$O $(OBJDIR)$Pi32_modpow$O $(OBJDIR)$Pi32_montmul$O $(OBJDIR)$Pi32_mulacc$O $(OBJDIR)$Pi32_muladd$O $(OBJDIR)$Pi32_ninv32$O $(OBJDIR)$Pi32_reduce$O $(OBJDIR)$Pi32_sub$O $(OBJDIR)$Pi32_tmont$O $(OBJDIR)$Pi62_modpow2$O $(OBJDIR)$Phmac$O $(OBJDIR)$Phmac_ct$O $(OBJDIR)$Phmac_drbg$O $(OBJDIR)$Psysrng$O $(OBJDIR)$Prsa_default_pkcs1_sign$O $(OBJDIR)$Prsa_default_pkcs1_vrfy$O $(OBJDIR)$Prsa_default_priv$O $(OBJDIR)$Prsa_default_pub$O $(OBJDIR)$Prsa_i15_pkcs1_sign$O $(OBJDIR)$Prsa_i15_pkcs1_vrfy$O $(OBJDIR)$Prsa_i15_priv$O $(OBJDIR)$Prsa_i15_pub$O $(OBJDIR)$Prsa_i31_pkcs1_sign$O $(OBJDIR)$Prsa_i31_pkcs1_vrfy$O $(OBJDIR)$Prsa_i31_priv$O $(OBJDIR)$Prsa_i31_pub$O $(OBJDIR)$Prsa_i32_pkcs1_sign$O $(OBJDIR)$Prsa_i32_pkcs1_vrfy$O $(OBJDIR)$Prsa_i32_priv$O $(OBJDIR)$Prsa_i32_pub$O $(OBJDIR)$Prsa_i62_pkcs1_sign$O $(OBJDIR)$Prsa_i62_pkcs1_vrfy$O $(OBJDIR)$Prsa_i62_priv$O $(OBJDIR)$Prsa_i62_pub$O $(OBJDIR)$Prsa_pkcs1_sig_pad$O $(OBJDIR)$Prsa_pkcs1_sig_unpad$O $(OBJDIR)$Prsa_ssl_decrypt$O $(OBJDIR)$Pprf$O $(OBJDIR)$Pprf_md5sha1$O $(OBJDIR)$Pprf_sha256$O $(OBJDIR)$Pprf_sha384$O $(OBJDIR)$Pssl_ccert_single_ec$O $(OBJDIR)$Pssl_ccert_single_rsa$O $(OBJDIR)$Pssl_client$O $(OBJDIR)$Pssl_client_default_rsapub$O $(OBJDIR)$Pssl_client_full$O $(OBJDIR)$Pssl_engine$O $(OBJDIR)$Pssl_engine_default_aescbc$O $(OBJDIR)$Pssl_engine_default_aesgcm$O $(OBJDIR)$Pssl_engine_default_chapol$O $(OBJDIR)$Pssl_engine_default_descbc$O $(OBJDIR)$Pssl_engine_default_ec$O $(OBJDIR)$Pssl_engine_default_ecdsa$O $(OBJDIR)$Pssl_engine_default_rsavrfy$O $(OBJDIR)$Pssl_hashes$O $(OBJDIR)$Pssl_hs_client$O $(OBJDIR)$Pssl_hs_server$O $(OBJDIR)$Pssl_io$O $(OBJDIR)$Pssl_keyexport$O $(OBJDIR)$Pssl_lru$O $(OBJDIR)$Pssl_rec_cbc$O $(OBJDIR)$Pssl_rec_chapol$O $(OBJDIR)$Pssl_rec_gcm$O $(OBJDIR)$Pssl_scert_single_ec$O $(OBJDIR)$Pssl_scert_single_rsa$O $(OBJDIR)$Pssl_server$O $(OBJDIR)$Pssl_server_full_ec$O $(OBJDIR)$Pssl_server_full_rsa$O $(OBJDIR)$Pssl_server_mine2c$O $(OBJDIR)$Pssl_server_mine2g$O $(OBJDIR)$Pssl_server_minf2c$O $(OBJDIR)$Pssl_server_minf2g$O $(OBJDIR)$Pssl_server_minr2g$O $(OBJDIR)$Pssl_server_minu2g$O $(OBJDIR)$Pssl_server_minv2g$O $(OBJDIR)$Paes_big_cbcdec$O $(OBJDIR)$Paes_big_cbcenc$O $(OBJDIR)$Paes_big_ctr$O $(OBJDIR)$Paes_big_ctrcbc$O $(OBJDIR)$Paes_big_dec$O $(OBJDIR)$Paes_big_enc$O $(OBJDIR)$Paes_common$O $(OBJDIR)$Paes_ct$O $(OBJDIR)$Paes_ct64$O $(OBJDIR)$Paes_ct64_cbcdec$O $(OBJDIR)$Paes_ct64_cbcenc$O $(OBJDIR)$Paes_ct64_ctr$O $(OBJDIR)$Paes_ct64_ctrcbc$O $(OBJDIR)$Paes_ct64_dec$O $(OBJDIR)$Paes_ct64_enc$O $(OBJDIR)$Paes_ct_cbcdec$O $(OBJDIR)$Paes_ct_cbcenc$O $(OBJDIR)$Paes_ct_ctr$O $(OBJDIR)$Paes_ct_ctrcbc$O $(OBJDIR)$Paes_ct_dec$O $(OBJDIR)$Paes_ct_enc$O $(OBJDIR)$Paes_pwr8$O $(OBJDIR)$Paes_pwr8_cbcdec$O $(OBJDIR)$Paes_pwr8_cbcenc$O $(OBJDIR)$Paes_pwr8_ctr$O $(OBJDIR)$Paes_small_cbcdec$O $(OBJDIR)$Paes_small_cbcenc$O $(OBJDIR)$Paes_small_ctr$O $(OBJDIR)$Paes_small_ctrcbc$O $(OBJDIR)$Paes_small_dec$O $(OBJDIR)$Paes_small_enc$O $(OBJDIR)$Paes_x86ni$O $(OBJDIR)$Paes_x86ni_cbcdec$O $(OBJDIR)$Paes_x86ni_cbcenc$O $(OBJDIR)$Paes_x86ni_ctr$O $(OBJDIR)$Paes_x86ni_ctrcbc$O $(OBJDIR)$Pchacha20_ct$O $(OBJDIR)$Pchacha20_sse2$O $(OBJDIR)$Pdes_ct$O $(OBJDIR)$Pdes_ct_cbcdec$O $(OBJDIR)$Pdes_ct_cbcenc$O $(OBJDIR)$Pdes_support$O $(OBJDIR)$Pdes_tab$O $(OBJDIR)$Pdes_tab_cbcdec$O $(OBJDIR)$Pdes_tab_cbcenc$O $(OBJDIR)$Ppoly1305_ctmul$O $(OBJDIR)$Ppoly1305_ctmul32$O $(OBJDIR)$Ppoly1305_ctmulq$O $(OBJDIR)$Ppoly1305_i15$O $(OBJDIR)$Pskey_decoder$O $(OBJDIR)$Px509_decoder$O $(OBJDIR)$Px509_knownkey$O $(OBJDIR)$Px509_minimal$O $(OBJDIR)$Px509_minimal_full$O OBJBRSSL = $(OBJDIR)$Pbrssl$O $(OBJDIR)$Pcerts$O $(OBJDIR)$Pchain$O $(OBJDIR)$Pclient$O $(OBJDIR)$Perrors$O $(OBJDIR)$Pfiles$O $(OBJDIR)$Pimpl$O $(OBJDIR)$Pkeys$O $(OBJDIR)$Pnames$O $(OBJDIR)$Pserver$O $(OBJDIR)$Pskey$O $(OBJDIR)$Psslio$O $(OBJDIR)$Pta$O $(OBJDIR)$Ptwrch$O $(OBJDIR)$Pvector$O $(OBJDIR)$Pverify$O $(OBJDIR)$Pxmem$O OBJTESTCRYPTO = $(OBJDIR)$Ptest_crypto$O OBJTESTSPEED = $(OBJDIR)$Ptest_speed$O @@ -64,6 +64,12 @@ $(TESTX509): $(BEARSSLLIB) $(OBJTESTX509) $(OBJDIR)$Psettings$O: src$Psettings.c $(HEADERSPRIV) $(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Psettings$O src$Psettings.c +$(OBJDIR)$Pccm$O: src$Paead$Pccm.c $(HEADERSPRIV) + $(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Pccm$O src$Paead$Pccm.c + +$(OBJDIR)$Peax$O: src$Paead$Peax.c $(HEADERSPRIV) + $(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Peax$O src$Paead$Peax.c + $(OBJDIR)$Pgcm$O: src$Paead$Pgcm.c $(HEADERSPRIV) $(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Pgcm$O src$Paead$Pgcm.c @@ -607,6 +613,9 @@ $(OBJDIR)$Paes_big_cbcenc$O: src$Psymcipher$Paes_big_cbcenc.c $(HEADERSPRIV) $(OBJDIR)$Paes_big_ctr$O: src$Psymcipher$Paes_big_ctr.c $(HEADERSPRIV) $(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Paes_big_ctr$O src$Psymcipher$Paes_big_ctr.c +$(OBJDIR)$Paes_big_ctrcbc$O: src$Psymcipher$Paes_big_ctrcbc.c $(HEADERSPRIV) + $(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Paes_big_ctrcbc$O src$Psymcipher$Paes_big_ctrcbc.c + $(OBJDIR)$Paes_big_dec$O: src$Psymcipher$Paes_big_dec.c $(HEADERSPRIV) $(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Paes_big_dec$O src$Psymcipher$Paes_big_dec.c @@ -631,6 +640,9 @@ $(OBJDIR)$Paes_ct64_cbcenc$O: src$Psymcipher$Paes_ct64_cbcenc.c $(HEADERSPRIV) $(OBJDIR)$Paes_ct64_ctr$O: src$Psymcipher$Paes_ct64_ctr.c $(HEADERSPRIV) $(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Paes_ct64_ctr$O src$Psymcipher$Paes_ct64_ctr.c +$(OBJDIR)$Paes_ct64_ctrcbc$O: src$Psymcipher$Paes_ct64_ctrcbc.c $(HEADERSPRIV) + $(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Paes_ct64_ctrcbc$O src$Psymcipher$Paes_ct64_ctrcbc.c + $(OBJDIR)$Paes_ct64_dec$O: src$Psymcipher$Paes_ct64_dec.c $(HEADERSPRIV) $(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Paes_ct64_dec$O src$Psymcipher$Paes_ct64_dec.c @@ -646,6 +658,9 @@ $(OBJDIR)$Paes_ct_cbcenc$O: src$Psymcipher$Paes_ct_cbcenc.c $(HEADERSPRIV) $(OBJDIR)$Paes_ct_ctr$O: src$Psymcipher$Paes_ct_ctr.c $(HEADERSPRIV) $(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Paes_ct_ctr$O src$Psymcipher$Paes_ct_ctr.c +$(OBJDIR)$Paes_ct_ctrcbc$O: src$Psymcipher$Paes_ct_ctrcbc.c $(HEADERSPRIV) + $(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Paes_ct_ctrcbc$O src$Psymcipher$Paes_ct_ctrcbc.c + $(OBJDIR)$Paes_ct_dec$O: src$Psymcipher$Paes_ct_dec.c $(HEADERSPRIV) $(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Paes_ct_dec$O src$Psymcipher$Paes_ct_dec.c @@ -673,6 +688,9 @@ $(OBJDIR)$Paes_small_cbcenc$O: src$Psymcipher$Paes_small_cbcenc.c $(HEADERSPRIV) $(OBJDIR)$Paes_small_ctr$O: src$Psymcipher$Paes_small_ctr.c $(HEADERSPRIV) $(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Paes_small_ctr$O src$Psymcipher$Paes_small_ctr.c +$(OBJDIR)$Paes_small_ctrcbc$O: src$Psymcipher$Paes_small_ctrcbc.c $(HEADERSPRIV) + $(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Paes_small_ctrcbc$O src$Psymcipher$Paes_small_ctrcbc.c + $(OBJDIR)$Paes_small_dec$O: src$Psymcipher$Paes_small_dec.c $(HEADERSPRIV) $(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Paes_small_dec$O src$Psymcipher$Paes_small_dec.c @@ -691,6 +709,9 @@ $(OBJDIR)$Paes_x86ni_cbcenc$O: src$Psymcipher$Paes_x86ni_cbcenc.c $(HEADERSPRIV) $(OBJDIR)$Paes_x86ni_ctr$O: src$Psymcipher$Paes_x86ni_ctr.c $(HEADERSPRIV) $(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Paes_x86ni_ctr$O src$Psymcipher$Paes_x86ni_ctr.c +$(OBJDIR)$Paes_x86ni_ctrcbc$O: src$Psymcipher$Paes_x86ni_ctrcbc.c $(HEADERSPRIV) + $(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Paes_x86ni_ctrcbc$O src$Psymcipher$Paes_x86ni_ctrcbc.c + $(OBJDIR)$Pchacha20_ct$O: src$Psymcipher$Pchacha20_ct.c $(HEADERSPRIV) $(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Pchacha20_ct$O src$Psymcipher$Pchacha20_ct.c diff --git a/mk/mkrules.sh b/mk/mkrules.sh index 44f787e..2fd1f0f 100755 --- a/mk/mkrules.sh +++ b/mk/mkrules.sh @@ -50,6 +50,8 @@ set -e # Source files. Please keep in alphabetical order. coresrc=" \ src/settings.c \ + src/aead/ccm.c \ + src/aead/eax.c \ src/aead/gcm.c \ src/codec/ccopy.c \ src/codec/dec16be.c \ @@ -231,6 +233,7 @@ coresrc=" \ src/symcipher/aes_big_cbcdec.c \ src/symcipher/aes_big_cbcenc.c \ src/symcipher/aes_big_ctr.c \ + src/symcipher/aes_big_ctrcbc.c \ src/symcipher/aes_big_dec.c \ src/symcipher/aes_big_enc.c \ src/symcipher/aes_common.c \ @@ -239,11 +242,13 @@ coresrc=" \ src/symcipher/aes_ct64_cbcdec.c \ src/symcipher/aes_ct64_cbcenc.c \ src/symcipher/aes_ct64_ctr.c \ + src/symcipher/aes_ct64_ctrcbc.c \ src/symcipher/aes_ct64_dec.c \ src/symcipher/aes_ct64_enc.c \ src/symcipher/aes_ct_cbcdec.c \ src/symcipher/aes_ct_cbcenc.c \ src/symcipher/aes_ct_ctr.c \ + src/symcipher/aes_ct_ctrcbc.c \ src/symcipher/aes_ct_dec.c \ src/symcipher/aes_ct_enc.c \ src/symcipher/aes_pwr8.c \ @@ -253,12 +258,14 @@ coresrc=" \ src/symcipher/aes_small_cbcdec.c \ src/symcipher/aes_small_cbcenc.c \ src/symcipher/aes_small_ctr.c \ + src/symcipher/aes_small_ctrcbc.c \ src/symcipher/aes_small_dec.c \ src/symcipher/aes_small_enc.c \ src/symcipher/aes_x86ni.c \ src/symcipher/aes_x86ni_cbcdec.c \ src/symcipher/aes_x86ni_cbcenc.c \ src/symcipher/aes_x86ni_ctr.c \ + src/symcipher/aes_x86ni_ctrcbc.c \ src/symcipher/chacha20_ct.c \ src/symcipher/chacha20_sse2.c \ src/symcipher/des_ct.c \ diff --git a/src/aead/ccm.c b/src/aead/ccm.c new file mode 100644 index 0000000..68cc913 --- /dev/null +++ b/src/aead/ccm.c @@ -0,0 +1,346 @@ +/* + * Copyright (c) 2017 Thomas Pornin + * + * Permission is hereby granted, free of charge, to any person obtaining + * a copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sublicense, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS + * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN + * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ + +#include "inner.h" + +/* + * Implementation Notes + * ==================== + * + * The combined CTR + CBC-MAC functions can only handle full blocks, + * so some buffering is necessary. + * + * - 'ptr' contains a value from 0 to 15, which is the number of bytes + * accumulated in buf[] that still needs to be processed with the + * current CBC-MAC computation. + * + * - When processing the message itself, CTR encryption/decryption is + * also done at the same time. The first 'ptr' bytes of buf[] then + * contains the plaintext bytes, while the last '16 - ptr' bytes of + * buf[] are the remnants of the stream block, to be used against + * the next input bytes, when available. When 'ptr' is 0, the + * contents of buf[] are to be ignored. + * + * - The current counter and running CBC-MAC values are kept in 'ctr' + * and 'cbcmac', respectively. + */ + +/* see bearssl_block.h */ +void +br_ccm_init(br_ccm_context *ctx, const br_block_ctrcbc_class **bctx) +{ + ctx->bctx = bctx; +} + +/* see bearssl_block.h */ +int +br_ccm_reset(br_ccm_context *ctx, const void *nonce, size_t nonce_len, + uint64_t aad_len, uint64_t data_len, size_t tag_len) +{ + unsigned char tmp[16]; + unsigned u, q; + + if (nonce_len < 7 || nonce_len > 13) { + return 0; + } + if (tag_len < 4 || tag_len > 16 || (tag_len & 1) != 0) { + return 0; + } + q = 15 - (unsigned)nonce_len; + ctx->tag_len = tag_len; + + /* + * Block B0, to start CBC-MAC. + */ + tmp[0] = (aad_len > 0 ? 0x40 : 0x00) + | (((unsigned)tag_len - 2) << 2) + | (q - 1); + memcpy(tmp + 1, nonce, nonce_len); + for (u = 0; u < q; u ++) { + tmp[15 - u] = (unsigned char)data_len; + data_len >>= 8; + } + if (data_len != 0) { + /* + * If the data length was not entirely consumed in the + * loop above, then it exceeds the maximum limit of + * q bytes (when encoded). + */ + return 0; + } + + /* + * Start CBC-MAC. + */ + memset(ctx->cbcmac, 0, sizeof ctx->cbcmac); + (*ctx->bctx)->mac(ctx->bctx, ctx->cbcmac, tmp, sizeof tmp); + + /* + * Assemble AAD length header. + */ + if ((aad_len >> 32) != 0) { + ctx->buf[0] = 0xFF; + ctx->buf[1] = 0xFF; + br_enc64be(ctx->buf + 2, aad_len); + ctx->ptr = 10; + } else if (aad_len >= 0xFF00) { + ctx->buf[0] = 0xFF; + ctx->buf[1] = 0xFE; + br_enc32be(ctx->buf + 2, (uint32_t)aad_len); + ctx->ptr = 6; + } else if (aad_len > 0) { + br_enc16be(ctx->buf, (unsigned)aad_len); + ctx->ptr = 2; + } else { + ctx->ptr = 0; + } + + /* + * Make initial counter value and compute tag mask. + */ + ctx->ctr[0] = q - 1; + memcpy(ctx->ctr + 1, nonce, nonce_len); + memset(ctx->ctr + 1 + nonce_len, 0, q); + memset(ctx->tagmask, 0, sizeof ctx->tagmask); + (*ctx->bctx)->ctr(ctx->bctx, ctx->ctr, + ctx->tagmask, sizeof ctx->tagmask); + + return 1; +} + +/* see bearssl_block.h */ +void +br_ccm_aad_inject(br_ccm_context *ctx, const void *data, size_t len) +{ + const unsigned char *dbuf; + size_t ptr; + + dbuf = data; + + /* + * Complete partial block, if needed. + */ + ptr = ctx->ptr; + if (ptr != 0) { + size_t clen; + + clen = (sizeof ctx->buf) - ptr; + if (clen > len) { + memcpy(ctx->buf + ptr, dbuf, len); + ctx->ptr = ptr + len; + return; + } + memcpy(ctx->buf + ptr, dbuf, clen); + dbuf += clen; + len -= clen; + (*ctx->bctx)->mac(ctx->bctx, ctx->cbcmac, + ctx->buf, sizeof ctx->buf); + } + + /* + * Process complete blocks. + */ + ptr = len & 15; + len -= ptr; + (*ctx->bctx)->mac(ctx->bctx, ctx->cbcmac, dbuf, len); + dbuf += len; + + /* + * Copy last partial block in the context buffer. + */ + memcpy(ctx->buf, dbuf, ptr); + ctx->ptr = ptr; +} + +/* see bearssl_block.h */ +void +br_ccm_flip(br_ccm_context *ctx) +{ + size_t ptr; + + /* + * Complete AAD partial block with zeros, if necessary. + */ + ptr = ctx->ptr; + if (ptr != 0) { + memset(ctx->buf + ptr, 0, (sizeof ctx->buf) - ptr); + (*ctx->bctx)->mac(ctx->bctx, ctx->cbcmac, + ctx->buf, sizeof ctx->buf); + ctx->ptr = 0; + } + + /* + * Counter was already set by br_ccm_reset(). + */ +} + +/* see bearssl_block.h */ +void +br_ccm_run(br_ccm_context *ctx, int encrypt, void *data, size_t len) +{ + unsigned char *dbuf; + size_t ptr; + + dbuf = data; + + /* + * Complete a partial block, if any: ctx->buf[] contains + * ctx->ptr plaintext bytes (already reported), and the other + * bytes are CTR stream output. + */ + ptr = ctx->ptr; + if (ptr != 0) { + size_t clen; + size_t u; + + clen = (sizeof ctx->buf) - ptr; + if (clen > len) { + clen = len; + } + if (encrypt) { + for (u = 0; u < clen; u ++) { + unsigned w, x; + + w = ctx->buf[ptr + u]; + x = dbuf[u]; + ctx->buf[ptr + u] = x; + dbuf[u] = w ^ x; + } + } else { + for (u = 0; u < clen; u ++) { + unsigned w; + + w = ctx->buf[ptr + u] ^ dbuf[u]; + dbuf[u] = w; + ctx->buf[ptr + u] = w; + } + } + dbuf += clen; + len -= clen; + ptr += clen; + if (ptr < sizeof ctx->buf) { + ctx->ptr = ptr; + return; + } + (*ctx->bctx)->mac(ctx->bctx, + ctx->cbcmac, ctx->buf, sizeof ctx->buf); + } + + /* + * Process all complete blocks. Note that the ctrcbc API is for + * encrypt-then-MAC (CBC-MAC is computed over the encrypted + * blocks) while CCM uses MAC-and-encrypt (CBC-MAC is computed + * over the plaintext blocks). Therefore, we need to use the + * _decryption_ function for encryption, and the encryption + * function for decryption (this works because CTR encryption + * and decryption are identical, so the choice really is about + * computing the CBC-MAC before or after XORing with the CTR + * stream). + */ + ptr = len & 15; + len -= ptr; + if (encrypt) { + (*ctx->bctx)->decrypt(ctx->bctx, ctx->ctr, ctx->cbcmac, + dbuf, len); + } else { + (*ctx->bctx)->encrypt(ctx->bctx, ctx->ctr, ctx->cbcmac, + dbuf, len); + } + dbuf += len; + + /* + * If there is some remaining data, then we need to compute an + * extra block of CTR stream. + */ + if (ptr != 0) { + size_t u; + + memset(ctx->buf, 0, sizeof ctx->buf); + (*ctx->bctx)->ctr(ctx->bctx, ctx->ctr, + ctx->buf, sizeof ctx->buf); + if (encrypt) { + for (u = 0; u < ptr; u ++) { + unsigned w, x; + + w = ctx->buf[u]; + x = dbuf[u]; + ctx->buf[u] = x; + dbuf[u] = w ^ x; + } + } else { + for (u = 0; u < ptr; u ++) { + unsigned w; + + w = ctx->buf[u] ^ dbuf[u]; + dbuf[u] = w; + ctx->buf[u] = w; + } + } + } + ctx->ptr = ptr; +} + +/* see bearssl_block.h */ +size_t +br_ccm_get_tag(br_ccm_context *ctx, void *tag) +{ + size_t ptr; + size_t u; + + /* + * If there is some buffered data, then we need to pad it with + * zeros and finish up CBC-MAC. + */ + ptr = ctx->ptr; + if (ptr != 0) { + memset(ctx->buf + ptr, 0, (sizeof ctx->buf) - ptr); + (*ctx->bctx)->mac(ctx->bctx, ctx->cbcmac, + ctx->buf, sizeof ctx->buf); + } + + /* + * XOR the tag mask into the CBC-MAC output. + */ + for (u = 0; u < ctx->tag_len; u ++) { + ctx->cbcmac[u] ^= ctx->tagmask[u]; + } + memcpy(tag, ctx->cbcmac, ctx->tag_len); + return ctx->tag_len; +} + +/* see bearssl_block.h */ +uint32_t +br_ccm_check_tag(br_ccm_context *ctx, const void *tag) +{ + unsigned char tmp[16]; + size_t u, tag_len; + uint32_t z; + + tag_len = br_ccm_get_tag(ctx, tmp); + z = 0; + for (u = 0; u < tag_len; u ++) { + z |= tmp[u] ^ ((const unsigned char *)tag)[u]; + } + return EQ0(z); +} diff --git a/src/aead/eax.c b/src/aead/eax.c new file mode 100644 index 0000000..07b1cb9 --- /dev/null +++ b/src/aead/eax.c @@ -0,0 +1,413 @@ +/* + * Copyright (c) 2017 Thomas Pornin + * + * Permission is hereby granted, free of charge, to any person obtaining + * a copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sublicense, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS + * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN + * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ + +#include "inner.h" + +/* + * Implementation Notes + * ==================== + * + * The combined CTR + CBC-MAC functions can only handle full blocks, + * so some buffering is necessary. Moreover, EAX has a special padding + * rule for CBC-MAC, which implies that we cannot compute the MAC over + * the last received full block until we know whether we are at the + * end of the data or not. + * + * - 'ptr' contains a value from 1 to 16, which is the number of bytes + * accumulated in buf[] that still needs to be processed with the + * current OMAC computation. Beware that this can go to 16: a + * complete block cannot be processed until it is known whether it + * is the last block or not. However, it can never be 0, because + * OMAC^t works on an input that is at least one-block long. + * + * - When processing the message itself, CTR encryption/decryption is + * also done at the same time. The first 'ptr' bytes of buf[] then + * contains the encrypted bytes, while the last '16 - ptr' bytes of + * buf[] are the remnants of the stream block, to be used against + * the next input bytes, when available. + * + * - The current counter and running CBC-MAC values are kept in 'ctr' + * and 'cbcmac', respectively. + * + * - The derived keys for padding are kept in L2 and L4 (double and + * quadruple of Enc_K(0^n), in GF(2^128), respectively). + */ + +/* + * Start an OMAC computation; the first block is the big-endian + * representation of the provided value ('val' must fit on one byte). + * We make it a delayed block because it may also be the last one, + */ +static void +omac_start(br_eax_context *ctx, unsigned val) +{ + memset(ctx->cbcmac, 0, sizeof ctx->cbcmac); + memset(ctx->buf, 0, sizeof ctx->buf); + ctx->buf[15] = val; + ctx->ptr = 16; +} + +/* + * Double a value in finite field GF(2^128), defined with modulus + * X^128+X^7+X^2+X+1. + */ +static void +double_gf128(unsigned char *dst, const unsigned char *src) +{ + unsigned cc; + int i; + + cc = 0x87 & -((unsigned)src[0] >> 7); + for (i = 15; i >= 0; i --) { + unsigned z; + + z = (src[i] << 1) ^ cc; + cc = z >> 8; + dst[i] = (unsigned char)z; + } +} + +/* + * Apply padding to the last block, currently in ctx->buf (with + * ctx->ptr bytes), and finalize OMAC computation. + */ +static void +do_pad(br_eax_context *ctx) +{ + unsigned char *pad; + size_t ptr, u; + + ptr = ctx->ptr; + if (ptr == 16) { + pad = ctx->L2; + } else { + ctx->buf[ptr ++] = 0x80; + memset(ctx->buf + ptr, 0x00, 16 - ptr); + pad = ctx->L4; + } + for (u = 0; u < sizeof ctx->buf; u ++) { + ctx->buf[u] ^= pad[u]; + } + (*ctx->bctx)->mac(ctx->bctx, ctx->cbcmac, ctx->buf, sizeof ctx->buf); +} + +/* + * Apply CBC-MAC on the provided data, with buffering management. This + * function assumes that on input, ctx->buf contains a full block of + * unprocessed data. + */ +static void +do_cbcmac_chunk(br_eax_context *ctx, const void *data, size_t len) +{ + size_t ptr; + + if (len == 0) { + return; + } + ptr = len & (size_t)15; + if (ptr == 0) { + len -= 16; + ptr = 16; + } else { + len -= ptr; + } + (*ctx->bctx)->mac(ctx->bctx, ctx->cbcmac, ctx->buf, sizeof ctx->buf); + (*ctx->bctx)->mac(ctx->bctx, ctx->cbcmac, data, len); + memcpy(ctx->buf, (const unsigned char *)data + len, ptr); + ctx->ptr = ptr; +} + +/* see bearssl_aead.h */ +void +br_eax_init(br_eax_context *ctx, const br_block_ctrcbc_class **bctx) +{ + unsigned char tmp[16], iv[16]; + + ctx->vtable = &br_eax_vtable; + ctx->bctx = bctx; + + /* + * Encrypt a whole-zero block to compute L2 and L4. + */ + memset(tmp, 0, sizeof tmp); + memset(iv, 0, sizeof iv); + (*bctx)->ctr(bctx, iv, tmp, sizeof tmp); + double_gf128(ctx->L2, tmp); + double_gf128(ctx->L4, ctx->L2); +} + +/* see bearssl_aead.h */ +void +br_eax_reset(br_eax_context *ctx, const void *nonce, size_t len) +{ + /* + * Process nonce with OMAC^0. + */ + omac_start(ctx, 0); + do_cbcmac_chunk(ctx, nonce, len); + do_pad(ctx); + memcpy(ctx->nonce, ctx->cbcmac, sizeof ctx->cbcmac); + + /* + * Start OMAC^1 for the AAD ("header" in the EAX specification). + */ + omac_start(ctx, 1); +} + +/* see bearssl_aead.h */ +void +br_eax_aad_inject(br_eax_context *ctx, const void *data, size_t len) +{ + size_t ptr; + + ptr = ctx->ptr; + + /* + * If there is a partial block, first complete it. + */ + if (ptr < 16) { + size_t clen; + + clen = 16 - ptr; + if (len <= clen) { + memcpy(ctx->buf + ptr, data, len); + ctx->ptr = ptr + len; + return; + } + memcpy(ctx->buf + ptr, data, clen); + data = (const unsigned char *)data + clen; + len -= clen; + } + + /* + * We now have a full block in buf[], and this is not the last + * block. + */ + do_cbcmac_chunk(ctx, data, len); +} + +/* see bearssl_aead.h */ +void +br_eax_flip(br_eax_context *ctx) +{ + /* + * Complete the OMAC computation on the AAD. + */ + do_pad(ctx); + memcpy(ctx->head, ctx->cbcmac, sizeof ctx->cbcmac); + + /* + * Start OMAC^2 for the encrypted data. + */ + omac_start(ctx, 2); + + /* + * Initial counter value for CTR is the processed nonce. + */ + memcpy(ctx->ctr, ctx->nonce, sizeof ctx->nonce); +} + +/* see bearssl_aead.h */ +void +br_eax_run(br_eax_context *ctx, int encrypt, void *data, size_t len) +{ + unsigned char *dbuf; + size_t ptr; + + /* + * Ensure that there is actual data to process. + */ + if (len == 0) { + return; + } + + dbuf = data; + ptr = ctx->ptr; + + if (ptr != 16) { + /* + * We have a partially consumed block. + */ + size_t u, clen; + + clen = 16 - ptr; + if (len <= clen) { + clen = len; + } + if (encrypt) { + for (u = 0; u < clen; u ++) { + ctx->buf[ptr + u] ^= dbuf[u]; + } + memcpy(dbuf, ctx->buf + ptr, clen); + } else { + for (u = 0; u < clen; u ++) { + unsigned dx, sx; + + sx = ctx->buf[ptr + u]; + dx = dbuf[u]; + ctx->buf[ptr + u] = dx; + dbuf[u] = sx ^ dx; + } + } + + if (len <= clen) { + ctx->ptr = ptr + clen; + return; + } + dbuf += clen; + len -= clen; + } + + /* + * We now have a complete encrypted block in buf[] that must still + * be processed with OMAC, and this is not the final buf. + */ + (*ctx->bctx)->mac(ctx->bctx, ctx->cbcmac, ctx->buf, sizeof ctx->buf); + + /* + * Do CTR encryption or decryption and CBC-MAC for all full blocks + * except the last. + */ + ptr = len & (size_t)15; + if (ptr == 0) { + len -= 16; + ptr = 16; + } else { + len -= ptr; + } + if (encrypt) { + (*ctx->bctx)->encrypt(ctx->bctx, ctx->ctr, ctx->cbcmac, + dbuf, len); + } else { + (*ctx->bctx)->decrypt(ctx->bctx, ctx->ctr, ctx->cbcmac, + dbuf, len); + } + dbuf += len; + + /* + * Compute next block of CTR stream, and use it to finish + * encrypting or decrypting the data. + */ + memset(ctx->buf, 0, sizeof ctx->buf); + (*ctx->bctx)->ctr(ctx->bctx, ctx->ctr, ctx->buf, sizeof ctx->buf); + if (encrypt) { + size_t u; + + for (u = 0; u < ptr; u ++) { + ctx->buf[u] ^= dbuf[u]; + } + memcpy(dbuf, ctx->buf, ptr); + } else { + size_t u; + + for (u = 0; u < ptr; u ++) { + unsigned dx, sx; + + sx = ctx->buf[u]; + dx = dbuf[u]; + ctx->buf[u] = dx; + dbuf[u] = sx ^ dx; + } + } + ctx->ptr = ptr; +} + +/* + * Complete tag computation. The final tag is written in ctx->cbcmac. + */ +static void +do_final(br_eax_context *ctx) +{ + size_t u; + + do_pad(ctx); + + /* + * Authentication tag is the XOR of the three OMAC outputs for + * the nonce, AAD and encrypted data. + */ + for (u = 0; u < 16; u ++) { + ctx->cbcmac[u] ^= ctx->nonce[u] ^ ctx->head[u]; + } +} + +/* see bearssl_aead.h */ +void +br_eax_get_tag(br_eax_context *ctx, void *tag) +{ + do_final(ctx); + memcpy(tag, ctx->cbcmac, sizeof ctx->cbcmac); +} + +/* see bearssl_aead.h */ +void +br_eax_get_tag_trunc(br_eax_context *ctx, void *tag, size_t len) +{ + do_final(ctx); + memcpy(tag, ctx->cbcmac, len); +} + +/* see bearssl_aead.h */ +uint32_t +br_eax_check_tag_trunc(br_eax_context *ctx, const void *tag, size_t len) +{ + unsigned char tmp[16]; + size_t u; + int x; + + br_eax_get_tag(ctx, tmp); + x = 0; + for (u = 0; u < len; u ++) { + x |= tmp[u] ^ ((const unsigned char *)tag)[u]; + } + return EQ0(x); +} + +/* see bearssl_aead.h */ +uint32_t +br_eax_check_tag(br_eax_context *ctx, const void *tag) +{ + return br_eax_check_tag_trunc(ctx, tag, 16); +} + +/* see bearssl_aead.h */ +const br_aead_class br_eax_vtable = { + 16, + (void (*)(const br_aead_class **, const void *, size_t)) + &br_eax_reset, + (void (*)(const br_aead_class **, const void *, size_t)) + &br_eax_aad_inject, + (void (*)(const br_aead_class **)) + &br_eax_flip, + (void (*)(const br_aead_class **, int, void *, size_t)) + &br_eax_run, + (void (*)(const br_aead_class **, void *)) + &br_eax_get_tag, + (uint32_t (*)(const br_aead_class **, const void *)) + &br_eax_check_tag, + (void (*)(const br_aead_class **, void *, size_t)) + &br_eax_get_tag_trunc, + (uint32_t (*)(const br_aead_class **, const void *, size_t)) + &br_eax_check_tag_trunc +}; diff --git a/src/aead/gcm.c b/src/aead/gcm.c index 9cf0f38..ede5f08 100644 --- a/src/aead/gcm.c +++ b/src/aead/gcm.c @@ -56,6 +56,7 @@ br_gcm_init(br_gcm_context *ctx, const br_block_ctr_class **bctx, br_ghash gh) { unsigned char iv[12]; + ctx->vtable = &br_gcm_vtable; ctx->bctx = bctx; ctx->gh = gh; @@ -262,9 +263,19 @@ br_gcm_get_tag(br_gcm_context *ctx, void *tag) (*ctx->bctx)->run(ctx->bctx, ctx->j0_1, ctx->j0_2, tag, 16); } +/* see bearssl_aead.h */ +void +br_gcm_get_tag_trunc(br_gcm_context *ctx, void *tag, size_t len) +{ + unsigned char tmp[16]; + + br_gcm_get_tag(ctx, tmp); + memcpy(tag, tmp, len); +} + /* see bearssl_aead.h */ uint32_t -br_gcm_check_tag(br_gcm_context *ctx, const void *tag) +br_gcm_check_tag_trunc(br_gcm_context *ctx, const void *tag, size_t len) { unsigned char tmp[16]; size_t u; @@ -272,12 +283,19 @@ br_gcm_check_tag(br_gcm_context *ctx, const void *tag) br_gcm_get_tag(ctx, tmp); x = 0; - for (u = 0; u < sizeof tmp; u ++) { + for (u = 0; u < len; u ++) { x |= tmp[u] ^ ((const unsigned char *)tag)[u]; } return EQ0(x); } +/* see bearssl_aead.h */ +uint32_t +br_gcm_check_tag(br_gcm_context *ctx, const void *tag) +{ + return br_gcm_check_tag_trunc(ctx, tag, 16); +} + /* see bearssl_aead.h */ const br_aead_class br_gcm_vtable = { 16, @@ -292,5 +310,9 @@ const br_aead_class br_gcm_vtable = { (void (*)(const br_aead_class **, void *)) &br_gcm_get_tag, (uint32_t (*)(const br_aead_class **, const void *)) - &br_gcm_check_tag + &br_gcm_check_tag, + (void (*)(const br_aead_class **, void *, size_t)) + &br_gcm_get_tag_trunc, + (uint32_t (*)(const br_aead_class **, const void *, size_t)) + &br_gcm_check_tag_trunc }; diff --git a/src/symcipher/aes_big_ctrcbc.c b/src/symcipher/aes_big_ctrcbc.c new file mode 100644 index 0000000..d45ca76 --- /dev/null +++ b/src/symcipher/aes_big_ctrcbc.c @@ -0,0 +1,142 @@ +/* + * Copyright (c) 2017 Thomas Pornin + * + * Permission is hereby granted, free of charge, to any person obtaining + * a copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sublicense, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS + * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN + * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ + +#include "inner.h" + +/* see bearssl_block.h */ +void +br_aes_big_ctrcbc_init(br_aes_big_ctrcbc_keys *ctx, + const void *key, size_t len) +{ + ctx->vtable = &br_aes_big_ctrcbc_vtable; + ctx->num_rounds = br_aes_keysched(ctx->skey, key, len); +} + +static void +xorbuf(void *dst, const void *src, size_t len) +{ + unsigned char *d; + const unsigned char *s; + + d = dst; + s = src; + while (len -- > 0) { + *d ++ ^= *s ++; + } +} + +/* see bearssl_block.h */ +void +br_aes_big_ctrcbc_ctr(const br_aes_big_ctrcbc_keys *ctx, + void *ctr, void *data, size_t len) +{ + unsigned char *buf, *bctr; + uint32_t cc0, cc1, cc2, cc3; + + buf = data; + bctr = ctr; + cc3 = br_dec32be(bctr + 0); + cc2 = br_dec32be(bctr + 4); + cc1 = br_dec32be(bctr + 8); + cc0 = br_dec32be(bctr + 12); + while (len > 0) { + unsigned char tmp[16]; + uint32_t carry; + + br_enc32be(tmp + 0, cc3); + br_enc32be(tmp + 4, cc2); + br_enc32be(tmp + 8, cc1); + br_enc32be(tmp + 12, cc0); + br_aes_big_encrypt(ctx->num_rounds, ctx->skey, tmp); + xorbuf(buf, tmp, 16); + buf += 16; + len -= 16; + cc0 ++; + carry = (~(cc0 | -cc0)) >> 31; + cc1 += carry; + carry &= (~(cc1 | -cc1)) >> 31; + cc2 += carry; + carry &= (~(cc2 | -cc2)) >> 31; + cc3 += carry; + } + br_enc32be(bctr + 0, cc3); + br_enc32be(bctr + 4, cc2); + br_enc32be(bctr + 8, cc1); + br_enc32be(bctr + 12, cc0); +} + +/* see bearssl_block.h */ +void +br_aes_big_ctrcbc_mac(const br_aes_big_ctrcbc_keys *ctx, + void *cbcmac, const void *data, size_t len) +{ + const unsigned char *buf; + + buf = data; + while (len > 0) { + xorbuf(cbcmac, buf, 16); + br_aes_big_encrypt(ctx->num_rounds, ctx->skey, cbcmac); + buf += 16; + len -= 16; + } +} + +/* see bearssl_block.h */ +void +br_aes_big_ctrcbc_encrypt(const br_aes_big_ctrcbc_keys *ctx, + void *ctr, void *cbcmac, void *data, size_t len) +{ + br_aes_big_ctrcbc_ctr(ctx, ctr, data, len); + br_aes_big_ctrcbc_mac(ctx, cbcmac, data, len); +} + +/* see bearssl_block.h */ +void +br_aes_big_ctrcbc_decrypt(const br_aes_big_ctrcbc_keys *ctx, + void *ctr, void *cbcmac, void *data, size_t len) +{ + br_aes_big_ctrcbc_mac(ctx, cbcmac, data, len); + br_aes_big_ctrcbc_ctr(ctx, ctr, data, len); +} + +/* see bearssl_block.h */ +const br_block_ctrcbc_class br_aes_big_ctrcbc_vtable = { + sizeof(br_aes_big_ctrcbc_keys), + 16, + 4, + (void (*)(const br_block_ctrcbc_class **, const void *, size_t)) + &br_aes_big_ctrcbc_init, + (void (*)(const br_block_ctrcbc_class *const *, + void *, void *, void *, size_t)) + &br_aes_big_ctrcbc_encrypt, + (void (*)(const br_block_ctrcbc_class *const *, + void *, void *, void *, size_t)) + &br_aes_big_ctrcbc_decrypt, + (void (*)(const br_block_ctrcbc_class *const *, + void *, void *, size_t)) + &br_aes_big_ctrcbc_ctr, + (void (*)(const br_block_ctrcbc_class *const *, + void *, const void *, size_t)) + &br_aes_big_ctrcbc_mac +}; diff --git a/src/symcipher/aes_ct64_ctrcbc.c b/src/symcipher/aes_ct64_ctrcbc.c new file mode 100644 index 0000000..21bb8ef --- /dev/null +++ b/src/symcipher/aes_ct64_ctrcbc.c @@ -0,0 +1,433 @@ +/* + * Copyright (c) 2017 Thomas Pornin + * + * Permission is hereby granted, free of charge, to any person obtaining + * a copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sublicense, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS + * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN + * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ + +#include "inner.h" + +/* see bearssl_block.h */ +void +br_aes_ct64_ctrcbc_init(br_aes_ct64_ctrcbc_keys *ctx, + const void *key, size_t len) +{ + ctx->vtable = &br_aes_ct64_ctrcbc_vtable; + ctx->num_rounds = br_aes_ct64_keysched(ctx->skey, key, len); +} + +static void +xorbuf(void *dst, const void *src, size_t len) +{ + unsigned char *d; + const unsigned char *s; + + d = dst; + s = src; + while (len -- > 0) { + *d ++ ^= *s ++; + } +} + +/* see bearssl_block.h */ +void +br_aes_ct64_ctrcbc_ctr(const br_aes_ct64_ctrcbc_keys *ctx, + void *ctr, void *data, size_t len) +{ + unsigned char *buf; + unsigned char *ivbuf; + uint32_t iv0, iv1, iv2, iv3; + uint64_t sk_exp[120]; + + br_aes_ct64_skey_expand(sk_exp, ctx->num_rounds, ctx->skey); + + /* + * We keep the counter as four 32-bit values, with big-endian + * convention, because that's what is expected for purposes of + * incrementing the counter value. + */ + ivbuf = ctr; + iv0 = br_dec32be(ivbuf + 0); + iv1 = br_dec32be(ivbuf + 4); + iv2 = br_dec32be(ivbuf + 8); + iv3 = br_dec32be(ivbuf + 12); + + buf = data; + while (len > 0) { + uint64_t q[8]; + uint32_t w[16]; + unsigned char tmp[64]; + int i, j; + + /* + * The bitslice implementation expects values in + * little-endian convention, so we have to byteswap them. + */ + j = (len >= 64) ? 16 : (int)(len >> 2); + for (i = 0; i < j; i += 4) { + uint32_t carry; + + w[i + 0] = br_swap32(iv0); + w[i + 1] = br_swap32(iv1); + w[i + 2] = br_swap32(iv2); + w[i + 3] = br_swap32(iv3); + iv3 ++; + carry = ~(iv3 | -iv3) >> 31; + iv2 += carry; + carry &= -(~(iv2 | -iv2) >> 31); + iv1 += carry; + carry &= -(~(iv1 | -iv1) >> 31); + iv0 += carry; + } + memset(w + i, 0, (16 - i) * sizeof(uint32_t)); + + for (i = 0; i < 4; i ++) { + br_aes_ct64_interleave_in( + &q[i], &q[i + 4], w + (i << 2)); + } + br_aes_ct64_ortho(q); + br_aes_ct64_bitslice_encrypt(ctx->num_rounds, sk_exp, q); + br_aes_ct64_ortho(q); + for (i = 0; i < 4; i ++) { + br_aes_ct64_interleave_out( + w + (i << 2), q[i], q[i + 4]); + } + + br_range_enc32le(tmp, w, 16); + if (len <= 64) { + xorbuf(buf, tmp, len); + break; + } + xorbuf(buf, tmp, 64); + buf += 64; + len -= 64; + } + br_enc32be(ivbuf + 0, iv0); + br_enc32be(ivbuf + 4, iv1); + br_enc32be(ivbuf + 8, iv2); + br_enc32be(ivbuf + 12, iv3); +} + +/* see bearssl_block.h */ +void +br_aes_ct64_ctrcbc_mac(const br_aes_ct64_ctrcbc_keys *ctx, + void *cbcmac, const void *data, size_t len) +{ + const unsigned char *buf; + uint32_t cm0, cm1, cm2, cm3; + uint64_t q[8]; + uint64_t sk_exp[120]; + + br_aes_ct64_skey_expand(sk_exp, ctx->num_rounds, ctx->skey); + + cm0 = br_dec32le((unsigned char *)cbcmac + 0); + cm1 = br_dec32le((unsigned char *)cbcmac + 4); + cm2 = br_dec32le((unsigned char *)cbcmac + 8); + cm3 = br_dec32le((unsigned char *)cbcmac + 12); + + buf = data; + memset(q, 0, sizeof q); + while (len > 0) { + uint32_t w[4]; + + w[0] = cm0 ^ br_dec32le(buf + 0); + w[1] = cm1 ^ br_dec32le(buf + 4); + w[2] = cm2 ^ br_dec32le(buf + 8); + w[3] = cm3 ^ br_dec32le(buf + 12); + + br_aes_ct64_interleave_in(&q[0], &q[4], w); + br_aes_ct64_ortho(q); + br_aes_ct64_bitslice_encrypt(ctx->num_rounds, sk_exp, q); + br_aes_ct64_ortho(q); + br_aes_ct64_interleave_out(w, q[0], q[4]); + + cm0 = w[0]; + cm1 = w[1]; + cm2 = w[2]; + cm3 = w[3]; + buf += 16; + len -= 16; + } + + br_enc32le((unsigned char *)cbcmac + 0, cm0); + br_enc32le((unsigned char *)cbcmac + 4, cm1); + br_enc32le((unsigned char *)cbcmac + 8, cm2); + br_enc32le((unsigned char *)cbcmac + 12, cm3); +} + +/* see bearssl_block.h */ +void +br_aes_ct64_ctrcbc_encrypt(const br_aes_ct64_ctrcbc_keys *ctx, + void *ctr, void *cbcmac, void *data, size_t len) +{ + /* + * When encrypting, the CBC-MAC processing must be lagging by + * one block, since it operates on the encrypted values, so + * it must wait for that encryption to complete. + */ + + unsigned char *buf; + unsigned char *ivbuf; + uint32_t iv0, iv1, iv2, iv3; + uint32_t cm0, cm1, cm2, cm3; + uint64_t sk_exp[120]; + uint64_t q[8]; + int first_iter; + + br_aes_ct64_skey_expand(sk_exp, ctx->num_rounds, ctx->skey); + + /* + * We keep the counter as four 32-bit values, with big-endian + * convention, because that's what is expected for purposes of + * incrementing the counter value. + */ + ivbuf = ctr; + iv0 = br_dec32be(ivbuf + 0); + iv1 = br_dec32be(ivbuf + 4); + iv2 = br_dec32be(ivbuf + 8); + iv3 = br_dec32be(ivbuf + 12); + + /* + * The current CBC-MAC value is kept in little-endian convention. + */ + cm0 = br_dec32le((unsigned char *)cbcmac + 0); + cm1 = br_dec32le((unsigned char *)cbcmac + 4); + cm2 = br_dec32le((unsigned char *)cbcmac + 8); + cm3 = br_dec32le((unsigned char *)cbcmac + 12); + + buf = data; + first_iter = 1; + memset(q, 0, sizeof q); + while (len > 0) { + uint32_t w[8], carry; + + /* + * The bitslice implementation expects values in + * little-endian convention, so we have to byteswap them. + */ + w[0] = br_swap32(iv0); + w[1] = br_swap32(iv1); + w[2] = br_swap32(iv2); + w[3] = br_swap32(iv3); + iv3 ++; + carry = ~(iv3 | -iv3) >> 31; + iv2 += carry; + carry &= -(~(iv2 | -iv2) >> 31); + iv1 += carry; + carry &= -(~(iv1 | -iv1) >> 31); + iv0 += carry; + + /* + * The block for CBC-MAC. + */ + w[4] = cm0; + w[5] = cm1; + w[6] = cm2; + w[7] = cm3; + + br_aes_ct64_interleave_in(&q[0], &q[4], w); + br_aes_ct64_interleave_in(&q[1], &q[5], w + 4); + br_aes_ct64_ortho(q); + br_aes_ct64_bitslice_encrypt(ctx->num_rounds, sk_exp, q); + br_aes_ct64_ortho(q); + br_aes_ct64_interleave_out(w, q[0], q[4]); + br_aes_ct64_interleave_out(w + 4, q[1], q[5]); + + /* + * We do the XOR with the plaintext in 32-bit registers, + * so that the value are available for CBC-MAC processing + * as well. + */ + w[0] ^= br_dec32le(buf + 0); + w[1] ^= br_dec32le(buf + 4); + w[2] ^= br_dec32le(buf + 8); + w[3] ^= br_dec32le(buf + 12); + br_enc32le(buf + 0, w[0]); + br_enc32le(buf + 4, w[1]); + br_enc32le(buf + 8, w[2]); + br_enc32le(buf + 12, w[3]); + + buf += 16; + len -= 16; + + /* + * We set the cm* values to the block to encrypt in the + * next iteration. + */ + if (first_iter) { + first_iter = 0; + cm0 ^= w[0]; + cm1 ^= w[1]; + cm2 ^= w[2]; + cm3 ^= w[3]; + } else { + cm0 = w[0] ^ w[4]; + cm1 = w[1] ^ w[5]; + cm2 = w[2] ^ w[6]; + cm3 = w[3] ^ w[7]; + } + + /* + * If this was the last iteration, then compute the + * extra block encryption to complete CBC-MAC. + */ + if (len == 0) { + w[0] = cm0; + w[1] = cm1; + w[2] = cm2; + w[3] = cm3; + br_aes_ct64_interleave_in(&q[0], &q[4], w); + br_aes_ct64_ortho(q); + br_aes_ct64_bitslice_encrypt( + ctx->num_rounds, sk_exp, q); + br_aes_ct64_ortho(q); + br_aes_ct64_interleave_out(w, q[0], q[4]); + cm0 = w[0]; + cm1 = w[1]; + cm2 = w[2]; + cm3 = w[3]; + break; + } + } + + br_enc32be(ivbuf + 0, iv0); + br_enc32be(ivbuf + 4, iv1); + br_enc32be(ivbuf + 8, iv2); + br_enc32be(ivbuf + 12, iv3); + br_enc32le((unsigned char *)cbcmac + 0, cm0); + br_enc32le((unsigned char *)cbcmac + 4, cm1); + br_enc32le((unsigned char *)cbcmac + 8, cm2); + br_enc32le((unsigned char *)cbcmac + 12, cm3); +} + +/* see bearssl_block.h */ +void +br_aes_ct64_ctrcbc_decrypt(const br_aes_ct64_ctrcbc_keys *ctx, + void *ctr, void *cbcmac, void *data, size_t len) +{ + unsigned char *buf; + unsigned char *ivbuf; + uint32_t iv0, iv1, iv2, iv3; + uint32_t cm0, cm1, cm2, cm3; + uint64_t sk_exp[120]; + uint64_t q[8]; + + br_aes_ct64_skey_expand(sk_exp, ctx->num_rounds, ctx->skey); + + /* + * We keep the counter as four 32-bit values, with big-endian + * convention, because that's what is expected for purposes of + * incrementing the counter value. + */ + ivbuf = ctr; + iv0 = br_dec32be(ivbuf + 0); + iv1 = br_dec32be(ivbuf + 4); + iv2 = br_dec32be(ivbuf + 8); + iv3 = br_dec32be(ivbuf + 12); + + /* + * The current CBC-MAC value is kept in little-endian convention. + */ + cm0 = br_dec32le((unsigned char *)cbcmac + 0); + cm1 = br_dec32le((unsigned char *)cbcmac + 4); + cm2 = br_dec32le((unsigned char *)cbcmac + 8); + cm3 = br_dec32le((unsigned char *)cbcmac + 12); + + buf = data; + memset(q, 0, sizeof q); + while (len > 0) { + uint32_t w[8], carry; + unsigned char tmp[16]; + + /* + * The bitslice implementation expects values in + * little-endian convention, so we have to byteswap them. + */ + w[0] = br_swap32(iv0); + w[1] = br_swap32(iv1); + w[2] = br_swap32(iv2); + w[3] = br_swap32(iv3); + iv3 ++; + carry = ~(iv3 | -iv3) >> 31; + iv2 += carry; + carry &= -(~(iv2 | -iv2) >> 31); + iv1 += carry; + carry &= -(~(iv1 | -iv1) >> 31); + iv0 += carry; + + /* + * The block for CBC-MAC. + */ + w[4] = cm0 ^ br_dec32le(buf + 0); + w[5] = cm1 ^ br_dec32le(buf + 4); + w[6] = cm2 ^ br_dec32le(buf + 8); + w[7] = cm3 ^ br_dec32le(buf + 12); + + br_aes_ct64_interleave_in(&q[0], &q[4], w); + br_aes_ct64_interleave_in(&q[1], &q[5], w + 4); + br_aes_ct64_ortho(q); + br_aes_ct64_bitslice_encrypt(ctx->num_rounds, sk_exp, q); + br_aes_ct64_ortho(q); + br_aes_ct64_interleave_out(w, q[0], q[4]); + br_aes_ct64_interleave_out(w + 4, q[1], q[5]); + + br_enc32le(tmp + 0, w[0]); + br_enc32le(tmp + 4, w[1]); + br_enc32le(tmp + 8, w[2]); + br_enc32le(tmp + 12, w[3]); + xorbuf(buf, tmp, 16); + cm0 = w[4]; + cm1 = w[5]; + cm2 = w[6]; + cm3 = w[7]; + buf += 16; + len -= 16; + } + + br_enc32be(ivbuf + 0, iv0); + br_enc32be(ivbuf + 4, iv1); + br_enc32be(ivbuf + 8, iv2); + br_enc32be(ivbuf + 12, iv3); + br_enc32le((unsigned char *)cbcmac + 0, cm0); + br_enc32le((unsigned char *)cbcmac + 4, cm1); + br_enc32le((unsigned char *)cbcmac + 8, cm2); + br_enc32le((unsigned char *)cbcmac + 12, cm3); +} + +/* see bearssl_block.h */ +const br_block_ctrcbc_class br_aes_ct64_ctrcbc_vtable = { + sizeof(br_aes_ct64_ctrcbc_keys), + 16, + 4, + (void (*)(const br_block_ctrcbc_class **, const void *, size_t)) + &br_aes_ct64_ctrcbc_init, + (void (*)(const br_block_ctrcbc_class *const *, + void *, void *, void *, size_t)) + &br_aes_ct64_ctrcbc_encrypt, + (void (*)(const br_block_ctrcbc_class *const *, + void *, void *, void *, size_t)) + &br_aes_ct64_ctrcbc_decrypt, + (void (*)(const br_block_ctrcbc_class *const *, + void *, void *, size_t)) + &br_aes_ct64_ctrcbc_ctr, + (void (*)(const br_block_ctrcbc_class *const *, + void *, const void *, size_t)) + &br_aes_ct64_ctrcbc_mac +}; diff --git a/src/symcipher/aes_ct_ctrcbc.c b/src/symcipher/aes_ct_ctrcbc.c new file mode 100644 index 0000000..8ae9fc7 --- /dev/null +++ b/src/symcipher/aes_ct_ctrcbc.c @@ -0,0 +1,422 @@ +/* + * Copyright (c) 2017 Thomas Pornin + * + * Permission is hereby granted, free of charge, to any person obtaining + * a copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sublicense, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS + * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN + * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ + +#include "inner.h" + +/* see bearssl_block.h */ +void +br_aes_ct_ctrcbc_init(br_aes_ct_ctrcbc_keys *ctx, + const void *key, size_t len) +{ + ctx->vtable = &br_aes_ct_ctrcbc_vtable; + ctx->num_rounds = br_aes_ct_keysched(ctx->skey, key, len); +} + +static void +xorbuf(void *dst, const void *src, size_t len) +{ + unsigned char *d; + const unsigned char *s; + + d = dst; + s = src; + while (len -- > 0) { + *d ++ ^= *s ++; + } +} + +/* see bearssl_block.h */ +void +br_aes_ct_ctrcbc_ctr(const br_aes_ct_ctrcbc_keys *ctx, + void *ctr, void *data, size_t len) +{ + unsigned char *buf; + unsigned char *ivbuf; + uint32_t iv0, iv1, iv2, iv3; + uint32_t sk_exp[120]; + + br_aes_ct_skey_expand(sk_exp, ctx->num_rounds, ctx->skey); + + /* + * We keep the counter as four 32-bit values, with big-endian + * convention, because that's what is expected for purposes of + * incrementing the counter value. + */ + ivbuf = ctr; + iv0 = br_dec32be(ivbuf + 0); + iv1 = br_dec32be(ivbuf + 4); + iv2 = br_dec32be(ivbuf + 8); + iv3 = br_dec32be(ivbuf + 12); + + buf = data; + while (len > 0) { + uint32_t q[8], carry; + unsigned char tmp[32]; + + /* + * The bitslice implementation expects values in + * little-endian convention, so we have to byteswap them. + */ + q[0] = br_swap32(iv0); + q[2] = br_swap32(iv1); + q[4] = br_swap32(iv2); + q[6] = br_swap32(iv3); + iv3 ++; + carry = ~(iv3 | -iv3) >> 31; + iv2 += carry; + carry &= -(~(iv2 | -iv2) >> 31); + iv1 += carry; + carry &= -(~(iv1 | -iv1) >> 31); + iv0 += carry; + q[1] = br_swap32(iv0); + q[3] = br_swap32(iv1); + q[5] = br_swap32(iv2); + q[7] = br_swap32(iv3); + if (len > 16) { + iv3 ++; + carry = ~(iv3 | -iv3) >> 31; + iv2 += carry; + carry &= -(~(iv2 | -iv2) >> 31); + iv1 += carry; + carry &= -(~(iv1 | -iv1) >> 31); + iv0 += carry; + } + + br_aes_ct_ortho(q); + br_aes_ct_bitslice_encrypt(ctx->num_rounds, sk_exp, q); + br_aes_ct_ortho(q); + + br_enc32le(tmp, q[0]); + br_enc32le(tmp + 4, q[2]); + br_enc32le(tmp + 8, q[4]); + br_enc32le(tmp + 12, q[6]); + br_enc32le(tmp + 16, q[1]); + br_enc32le(tmp + 20, q[3]); + br_enc32le(tmp + 24, q[5]); + br_enc32le(tmp + 28, q[7]); + + if (len <= 32) { + xorbuf(buf, tmp, len); + break; + } + xorbuf(buf, tmp, 32); + buf += 32; + len -= 32; + } + br_enc32be(ivbuf + 0, iv0); + br_enc32be(ivbuf + 4, iv1); + br_enc32be(ivbuf + 8, iv2); + br_enc32be(ivbuf + 12, iv3); +} + +/* see bearssl_block.h */ +void +br_aes_ct_ctrcbc_mac(const br_aes_ct_ctrcbc_keys *ctx, + void *cbcmac, const void *data, size_t len) +{ + const unsigned char *buf; + uint32_t cm0, cm1, cm2, cm3; + uint32_t q[8]; + uint32_t sk_exp[120]; + + br_aes_ct_skey_expand(sk_exp, ctx->num_rounds, ctx->skey); + + buf = data; + cm0 = br_dec32le((unsigned char *)cbcmac + 0); + cm1 = br_dec32le((unsigned char *)cbcmac + 4); + cm2 = br_dec32le((unsigned char *)cbcmac + 8); + cm3 = br_dec32le((unsigned char *)cbcmac + 12); + q[1] = 0; + q[3] = 0; + q[5] = 0; + q[7] = 0; + + while (len > 0) { + q[0] = cm0 ^ br_dec32le(buf + 0); + q[2] = cm1 ^ br_dec32le(buf + 4); + q[4] = cm2 ^ br_dec32le(buf + 8); + q[6] = cm3 ^ br_dec32le(buf + 12); + + br_aes_ct_ortho(q); + br_aes_ct_bitslice_encrypt(ctx->num_rounds, sk_exp, q); + br_aes_ct_ortho(q); + + cm0 = q[0]; + cm1 = q[2]; + cm2 = q[4]; + cm3 = q[6]; + buf += 16; + len -= 16; + } + + br_enc32le((unsigned char *)cbcmac + 0, cm0); + br_enc32le((unsigned char *)cbcmac + 4, cm1); + br_enc32le((unsigned char *)cbcmac + 8, cm2); + br_enc32le((unsigned char *)cbcmac + 12, cm3); +} + +/* see bearssl_block.h */ +void +br_aes_ct_ctrcbc_encrypt(const br_aes_ct_ctrcbc_keys *ctx, + void *ctr, void *cbcmac, void *data, size_t len) +{ + /* + * When encrypting, the CBC-MAC processing must be lagging by + * one block, since it operates on the encrypted values, so + * it must wait for that encryption to complete. + */ + + unsigned char *buf; + unsigned char *ivbuf; + uint32_t iv0, iv1, iv2, iv3; + uint32_t cm0, cm1, cm2, cm3; + uint32_t sk_exp[120]; + int first_iter; + + br_aes_ct_skey_expand(sk_exp, ctx->num_rounds, ctx->skey); + + /* + * We keep the counter as four 32-bit values, with big-endian + * convention, because that's what is expected for purposes of + * incrementing the counter value. + */ + ivbuf = ctr; + iv0 = br_dec32be(ivbuf + 0); + iv1 = br_dec32be(ivbuf + 4); + iv2 = br_dec32be(ivbuf + 8); + iv3 = br_dec32be(ivbuf + 12); + + /* + * The current CBC-MAC value is kept in little-endian convention. + */ + cm0 = br_dec32le((unsigned char *)cbcmac + 0); + cm1 = br_dec32le((unsigned char *)cbcmac + 4); + cm2 = br_dec32le((unsigned char *)cbcmac + 8); + cm3 = br_dec32le((unsigned char *)cbcmac + 12); + + buf = data; + first_iter = 1; + while (len > 0) { + uint32_t q[8], carry; + + /* + * The bitslice implementation expects values in + * little-endian convention, so we have to byteswap them. + */ + q[0] = br_swap32(iv0); + q[2] = br_swap32(iv1); + q[4] = br_swap32(iv2); + q[6] = br_swap32(iv3); + iv3 ++; + carry = ~(iv3 | -iv3) >> 31; + iv2 += carry; + carry &= -(~(iv2 | -iv2) >> 31); + iv1 += carry; + carry &= -(~(iv1 | -iv1) >> 31); + iv0 += carry; + + /* + * The odd values are used for CBC-MAC. + */ + q[1] = cm0; + q[3] = cm1; + q[5] = cm2; + q[7] = cm3; + + br_aes_ct_ortho(q); + br_aes_ct_bitslice_encrypt(ctx->num_rounds, sk_exp, q); + br_aes_ct_ortho(q); + + /* + * We do the XOR with the plaintext in 32-bit registers, + * so that the value are available for CBC-MAC processing + * as well. + */ + q[0] ^= br_dec32le(buf + 0); + q[2] ^= br_dec32le(buf + 4); + q[4] ^= br_dec32le(buf + 8); + q[6] ^= br_dec32le(buf + 12); + br_enc32le(buf + 0, q[0]); + br_enc32le(buf + 4, q[2]); + br_enc32le(buf + 8, q[4]); + br_enc32le(buf + 12, q[6]); + + buf += 16; + len -= 16; + + /* + * We set the cm* values to the block to encrypt in the + * next iteration. + */ + if (first_iter) { + first_iter = 0; + cm0 ^= q[0]; + cm1 ^= q[2]; + cm2 ^= q[4]; + cm3 ^= q[6]; + } else { + cm0 = q[0] ^ q[1]; + cm1 = q[2] ^ q[3]; + cm2 = q[4] ^ q[5]; + cm3 = q[6] ^ q[7]; + } + + /* + * If this was the last iteration, then compute the + * extra block encryption to complete CBC-MAC. + */ + if (len == 0) { + q[0] = cm0; + q[2] = cm1; + q[4] = cm2; + q[6] = cm3; + br_aes_ct_ortho(q); + br_aes_ct_bitslice_encrypt(ctx->num_rounds, sk_exp, q); + br_aes_ct_ortho(q); + cm0 = q[0]; + cm1 = q[2]; + cm2 = q[4]; + cm3 = q[6]; + break; + } + } + + br_enc32be(ivbuf + 0, iv0); + br_enc32be(ivbuf + 4, iv1); + br_enc32be(ivbuf + 8, iv2); + br_enc32be(ivbuf + 12, iv3); + br_enc32le((unsigned char *)cbcmac + 0, cm0); + br_enc32le((unsigned char *)cbcmac + 4, cm1); + br_enc32le((unsigned char *)cbcmac + 8, cm2); + br_enc32le((unsigned char *)cbcmac + 12, cm3); +} + +/* see bearssl_block.h */ +void +br_aes_ct_ctrcbc_decrypt(const br_aes_ct_ctrcbc_keys *ctx, + void *ctr, void *cbcmac, void *data, size_t len) +{ + unsigned char *buf; + unsigned char *ivbuf; + uint32_t iv0, iv1, iv2, iv3; + uint32_t cm0, cm1, cm2, cm3; + uint32_t sk_exp[120]; + + br_aes_ct_skey_expand(sk_exp, ctx->num_rounds, ctx->skey); + + /* + * We keep the counter as four 32-bit values, with big-endian + * convention, because that's what is expected for purposes of + * incrementing the counter value. + */ + ivbuf = ctr; + iv0 = br_dec32be(ivbuf + 0); + iv1 = br_dec32be(ivbuf + 4); + iv2 = br_dec32be(ivbuf + 8); + iv3 = br_dec32be(ivbuf + 12); + + /* + * The current CBC-MAC value is kept in little-endian convention. + */ + cm0 = br_dec32le((unsigned char *)cbcmac + 0); + cm1 = br_dec32le((unsigned char *)cbcmac + 4); + cm2 = br_dec32le((unsigned char *)cbcmac + 8); + cm3 = br_dec32le((unsigned char *)cbcmac + 12); + + buf = data; + while (len > 0) { + uint32_t q[8], carry; + unsigned char tmp[16]; + + /* + * The bitslice implementation expects values in + * little-endian convention, so we have to byteswap them. + */ + q[0] = br_swap32(iv0); + q[2] = br_swap32(iv1); + q[4] = br_swap32(iv2); + q[6] = br_swap32(iv3); + iv3 ++; + carry = ~(iv3 | -iv3) >> 31; + iv2 += carry; + carry &= -(~(iv2 | -iv2) >> 31); + iv1 += carry; + carry &= -(~(iv1 | -iv1) >> 31); + iv0 += carry; + + /* + * The odd values are used for CBC-MAC. + */ + q[1] = cm0 ^ br_dec32le(buf + 0); + q[3] = cm1 ^ br_dec32le(buf + 4); + q[5] = cm2 ^ br_dec32le(buf + 8); + q[7] = cm3 ^ br_dec32le(buf + 12); + + br_aes_ct_ortho(q); + br_aes_ct_bitslice_encrypt(ctx->num_rounds, sk_exp, q); + br_aes_ct_ortho(q); + + br_enc32le(tmp + 0, q[0]); + br_enc32le(tmp + 4, q[2]); + br_enc32le(tmp + 8, q[4]); + br_enc32le(tmp + 12, q[6]); + xorbuf(buf, tmp, 16); + cm0 = q[1]; + cm1 = q[3]; + cm2 = q[5]; + cm3 = q[7]; + buf += 16; + len -= 16; + } + + br_enc32be(ivbuf + 0, iv0); + br_enc32be(ivbuf + 4, iv1); + br_enc32be(ivbuf + 8, iv2); + br_enc32be(ivbuf + 12, iv3); + br_enc32le((unsigned char *)cbcmac + 0, cm0); + br_enc32le((unsigned char *)cbcmac + 4, cm1); + br_enc32le((unsigned char *)cbcmac + 8, cm2); + br_enc32le((unsigned char *)cbcmac + 12, cm3); +} + +/* see bearssl_block.h */ +const br_block_ctrcbc_class br_aes_ct_ctrcbc_vtable = { + sizeof(br_aes_ct_ctrcbc_keys), + 16, + 4, + (void (*)(const br_block_ctrcbc_class **, const void *, size_t)) + &br_aes_ct_ctrcbc_init, + (void (*)(const br_block_ctrcbc_class *const *, + void *, void *, void *, size_t)) + &br_aes_ct_ctrcbc_encrypt, + (void (*)(const br_block_ctrcbc_class *const *, + void *, void *, void *, size_t)) + &br_aes_ct_ctrcbc_decrypt, + (void (*)(const br_block_ctrcbc_class *const *, + void *, void *, size_t)) + &br_aes_ct_ctrcbc_ctr, + (void (*)(const br_block_ctrcbc_class *const *, + void *, const void *, size_t)) + &br_aes_ct_ctrcbc_mac +}; diff --git a/src/symcipher/aes_small_ctrcbc.c b/src/symcipher/aes_small_ctrcbc.c new file mode 100644 index 0000000..2d6ba32 --- /dev/null +++ b/src/symcipher/aes_small_ctrcbc.c @@ -0,0 +1,142 @@ +/* + * Copyright (c) 2017 Thomas Pornin + * + * Permission is hereby granted, free of charge, to any person obtaining + * a copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sublicense, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS + * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN + * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ + +#include "inner.h" + +/* see bearssl_block.h */ +void +br_aes_small_ctrcbc_init(br_aes_small_ctrcbc_keys *ctx, + const void *key, size_t len) +{ + ctx->vtable = &br_aes_small_ctrcbc_vtable; + ctx->num_rounds = br_aes_keysched(ctx->skey, key, len); +} + +static void +xorbuf(void *dst, const void *src, size_t len) +{ + unsigned char *d; + const unsigned char *s; + + d = dst; + s = src; + while (len -- > 0) { + *d ++ ^= *s ++; + } +} + +/* see bearssl_block.h */ +void +br_aes_small_ctrcbc_ctr(const br_aes_small_ctrcbc_keys *ctx, + void *ctr, void *data, size_t len) +{ + unsigned char *buf, *bctr; + uint32_t cc0, cc1, cc2, cc3; + + buf = data; + bctr = ctr; + cc3 = br_dec32be(bctr + 0); + cc2 = br_dec32be(bctr + 4); + cc1 = br_dec32be(bctr + 8); + cc0 = br_dec32be(bctr + 12); + while (len > 0) { + unsigned char tmp[16]; + uint32_t carry; + + br_enc32be(tmp + 0, cc3); + br_enc32be(tmp + 4, cc2); + br_enc32be(tmp + 8, cc1); + br_enc32be(tmp + 12, cc0); + br_aes_small_encrypt(ctx->num_rounds, ctx->skey, tmp); + xorbuf(buf, tmp, 16); + buf += 16; + len -= 16; + cc0 ++; + carry = (~(cc0 | -cc0)) >> 31; + cc1 += carry; + carry &= (~(cc1 | -cc1)) >> 31; + cc2 += carry; + carry &= (~(cc2 | -cc2)) >> 31; + cc3 += carry; + } + br_enc32be(bctr + 0, cc3); + br_enc32be(bctr + 4, cc2); + br_enc32be(bctr + 8, cc1); + br_enc32be(bctr + 12, cc0); +} + +/* see bearssl_block.h */ +void +br_aes_small_ctrcbc_mac(const br_aes_small_ctrcbc_keys *ctx, + void *cbcmac, const void *data, size_t len) +{ + const unsigned char *buf; + + buf = data; + while (len > 0) { + xorbuf(cbcmac, buf, 16); + br_aes_small_encrypt(ctx->num_rounds, ctx->skey, cbcmac); + buf += 16; + len -= 16; + } +} + +/* see bearssl_block.h */ +void +br_aes_small_ctrcbc_encrypt(const br_aes_small_ctrcbc_keys *ctx, + void *ctr, void *cbcmac, void *data, size_t len) +{ + br_aes_small_ctrcbc_ctr(ctx, ctr, data, len); + br_aes_small_ctrcbc_mac(ctx, cbcmac, data, len); +} + +/* see bearssl_block.h */ +void +br_aes_small_ctrcbc_decrypt(const br_aes_small_ctrcbc_keys *ctx, + void *ctr, void *cbcmac, void *data, size_t len) +{ + br_aes_small_ctrcbc_mac(ctx, cbcmac, data, len); + br_aes_small_ctrcbc_ctr(ctx, ctr, data, len); +} + +/* see bearssl_block.h */ +const br_block_ctrcbc_class br_aes_small_ctrcbc_vtable = { + sizeof(br_aes_small_ctrcbc_keys), + 16, + 4, + (void (*)(const br_block_ctrcbc_class **, const void *, size_t)) + &br_aes_small_ctrcbc_init, + (void (*)(const br_block_ctrcbc_class *const *, + void *, void *, void *, size_t)) + &br_aes_small_ctrcbc_encrypt, + (void (*)(const br_block_ctrcbc_class *const *, + void *, void *, void *, size_t)) + &br_aes_small_ctrcbc_decrypt, + (void (*)(const br_block_ctrcbc_class *const *, + void *, void *, size_t)) + &br_aes_small_ctrcbc_ctr, + (void (*)(const br_block_ctrcbc_class *const *, + void *, const void *, size_t)) + &br_aes_small_ctrcbc_mac +}; diff --git a/src/symcipher/aes_x86ni_ctrcbc.c b/src/symcipher/aes_x86ni_ctrcbc.c new file mode 100644 index 0000000..f57fead --- /dev/null +++ b/src/symcipher/aes_x86ni_ctrcbc.c @@ -0,0 +1,596 @@ +/* + * Copyright (c) 2017 Thomas Pornin + * + * Permission is hereby granted, free of charge, to any person obtaining + * a copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sublicense, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS + * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN + * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ + +#define BR_ENABLE_INTRINSICS 1 +#include "inner.h" + +#if BR_AES_X86NI + +/* see bearssl_block.h */ +const br_block_ctrcbc_class * +br_aes_x86ni_ctrcbc_get_vtable(void) +{ + return br_aes_x86ni_supported() ? &br_aes_x86ni_ctrcbc_vtable : NULL; +} + +/* see bearssl_block.h */ +void +br_aes_x86ni_ctrcbc_init(br_aes_x86ni_ctrcbc_keys *ctx, + const void *key, size_t len) +{ + ctx->vtable = &br_aes_x86ni_ctrcbc_vtable; + ctx->num_rounds = br_aes_x86ni_keysched_enc(ctx->skey.skni, key, len); +} + +BR_TARGETS_X86_UP + +/* see bearssl_block.h */ +BR_TARGET("sse2,sse4.1,aes") +void +br_aes_x86ni_ctrcbc_ctr(const br_aes_x86ni_ctrcbc_keys *ctx, + void *ctr, void *data, size_t len) +{ + unsigned char *buf; + unsigned num_rounds; + __m128i sk[15]; + __m128i ivx0, ivx1, ivx2, ivx3; + __m128i erev, zero, one, four, notthree; + unsigned u; + + buf = data; + num_rounds = ctx->num_rounds; + for (u = 0; u <= num_rounds; u ++) { + sk[u] = _mm_loadu_si128((void *)(ctx->skey.skni + (u << 4))); + } + + /* + * Some SSE2 constants. + */ + erev = _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, + 8, 9, 10, 11, 12, 13, 14, 15); + zero = _mm_setzero_si128(); + one = _mm_set_epi64x(0, 1); + four = _mm_set_epi64x(0, 4); + notthree = _mm_sub_epi64(zero, four); + + /* + * Decode the counter in big-endian and pre-increment the other + * three counters. + */ + ivx0 = _mm_shuffle_epi8(_mm_loadu_si128((void *)ctr), erev); + ivx1 = _mm_add_epi64(ivx0, one); + ivx1 = _mm_sub_epi64(ivx1, + _mm_slli_si128(_mm_cmpeq_epi64(ivx1, zero), 8)); + ivx2 = _mm_add_epi64(ivx1, one); + ivx2 = _mm_sub_epi64(ivx2, + _mm_slli_si128(_mm_cmpeq_epi64(ivx2, zero), 8)); + ivx3 = _mm_add_epi64(ivx2, one); + ivx3 = _mm_sub_epi64(ivx3, + _mm_slli_si128(_mm_cmpeq_epi64(ivx3, zero), 8)); + while (len > 0) { + __m128i x0, x1, x2, x3; + + /* + * Load counter values; we need to byteswap them because + * the specification says that they use big-endian. + */ + x0 = _mm_shuffle_epi8(ivx0, erev); + x1 = _mm_shuffle_epi8(ivx1, erev); + x2 = _mm_shuffle_epi8(ivx2, erev); + x3 = _mm_shuffle_epi8(ivx3, erev); + + x0 = _mm_xor_si128(x0, sk[0]); + x1 = _mm_xor_si128(x1, sk[0]); + x2 = _mm_xor_si128(x2, sk[0]); + x3 = _mm_xor_si128(x3, sk[0]); + x0 = _mm_aesenc_si128(x0, sk[1]); + x1 = _mm_aesenc_si128(x1, sk[1]); + x2 = _mm_aesenc_si128(x2, sk[1]); + x3 = _mm_aesenc_si128(x3, sk[1]); + x0 = _mm_aesenc_si128(x0, sk[2]); + x1 = _mm_aesenc_si128(x1, sk[2]); + x2 = _mm_aesenc_si128(x2, sk[2]); + x3 = _mm_aesenc_si128(x3, sk[2]); + x0 = _mm_aesenc_si128(x0, sk[3]); + x1 = _mm_aesenc_si128(x1, sk[3]); + x2 = _mm_aesenc_si128(x2, sk[3]); + x3 = _mm_aesenc_si128(x3, sk[3]); + x0 = _mm_aesenc_si128(x0, sk[4]); + x1 = _mm_aesenc_si128(x1, sk[4]); + x2 = _mm_aesenc_si128(x2, sk[4]); + x3 = _mm_aesenc_si128(x3, sk[4]); + x0 = _mm_aesenc_si128(x0, sk[5]); + x1 = _mm_aesenc_si128(x1, sk[5]); + x2 = _mm_aesenc_si128(x2, sk[5]); + x3 = _mm_aesenc_si128(x3, sk[5]); + x0 = _mm_aesenc_si128(x0, sk[6]); + x1 = _mm_aesenc_si128(x1, sk[6]); + x2 = _mm_aesenc_si128(x2, sk[6]); + x3 = _mm_aesenc_si128(x3, sk[6]); + x0 = _mm_aesenc_si128(x0, sk[7]); + x1 = _mm_aesenc_si128(x1, sk[7]); + x2 = _mm_aesenc_si128(x2, sk[7]); + x3 = _mm_aesenc_si128(x3, sk[7]); + x0 = _mm_aesenc_si128(x0, sk[8]); + x1 = _mm_aesenc_si128(x1, sk[8]); + x2 = _mm_aesenc_si128(x2, sk[8]); + x3 = _mm_aesenc_si128(x3, sk[8]); + x0 = _mm_aesenc_si128(x0, sk[9]); + x1 = _mm_aesenc_si128(x1, sk[9]); + x2 = _mm_aesenc_si128(x2, sk[9]); + x3 = _mm_aesenc_si128(x3, sk[9]); + if (num_rounds == 10) { + x0 = _mm_aesenclast_si128(x0, sk[10]); + x1 = _mm_aesenclast_si128(x1, sk[10]); + x2 = _mm_aesenclast_si128(x2, sk[10]); + x3 = _mm_aesenclast_si128(x3, sk[10]); + } else if (num_rounds == 12) { + x0 = _mm_aesenc_si128(x0, sk[10]); + x1 = _mm_aesenc_si128(x1, sk[10]); + x2 = _mm_aesenc_si128(x2, sk[10]); + x3 = _mm_aesenc_si128(x3, sk[10]); + x0 = _mm_aesenc_si128(x0, sk[11]); + x1 = _mm_aesenc_si128(x1, sk[11]); + x2 = _mm_aesenc_si128(x2, sk[11]); + x3 = _mm_aesenc_si128(x3, sk[11]); + x0 = _mm_aesenclast_si128(x0, sk[12]); + x1 = _mm_aesenclast_si128(x1, sk[12]); + x2 = _mm_aesenclast_si128(x2, sk[12]); + x3 = _mm_aesenclast_si128(x3, sk[12]); + } else { + x0 = _mm_aesenc_si128(x0, sk[10]); + x1 = _mm_aesenc_si128(x1, sk[10]); + x2 = _mm_aesenc_si128(x2, sk[10]); + x3 = _mm_aesenc_si128(x3, sk[10]); + x0 = _mm_aesenc_si128(x0, sk[11]); + x1 = _mm_aesenc_si128(x1, sk[11]); + x2 = _mm_aesenc_si128(x2, sk[11]); + x3 = _mm_aesenc_si128(x3, sk[11]); + x0 = _mm_aesenc_si128(x0, sk[12]); + x1 = _mm_aesenc_si128(x1, sk[12]); + x2 = _mm_aesenc_si128(x2, sk[12]); + x3 = _mm_aesenc_si128(x3, sk[12]); + x0 = _mm_aesenc_si128(x0, sk[13]); + x1 = _mm_aesenc_si128(x1, sk[13]); + x2 = _mm_aesenc_si128(x2, sk[13]); + x3 = _mm_aesenc_si128(x3, sk[13]); + x0 = _mm_aesenclast_si128(x0, sk[14]); + x1 = _mm_aesenclast_si128(x1, sk[14]); + x2 = _mm_aesenclast_si128(x2, sk[14]); + x3 = _mm_aesenclast_si128(x3, sk[14]); + } + if (len >= 64) { + x0 = _mm_xor_si128(x0, + _mm_loadu_si128((void *)(buf + 0))); + x1 = _mm_xor_si128(x1, + _mm_loadu_si128((void *)(buf + 16))); + x2 = _mm_xor_si128(x2, + _mm_loadu_si128((void *)(buf + 32))); + x3 = _mm_xor_si128(x3, + _mm_loadu_si128((void *)(buf + 48))); + _mm_storeu_si128((void *)(buf + 0), x0); + _mm_storeu_si128((void *)(buf + 16), x1); + _mm_storeu_si128((void *)(buf + 32), x2); + _mm_storeu_si128((void *)(buf + 48), x3); + buf += 64; + len -= 64; + } else { + unsigned char tmp[64]; + + _mm_storeu_si128((void *)(tmp + 0), x0); + _mm_storeu_si128((void *)(tmp + 16), x1); + _mm_storeu_si128((void *)(tmp + 32), x2); + _mm_storeu_si128((void *)(tmp + 48), x3); + for (u = 0; u < len; u ++) { + buf[u] ^= tmp[u]; + } + switch (len) { + case 16: + ivx0 = ivx1; + break; + case 32: + ivx0 = ivx2; + break; + case 48: + ivx0 = ivx3; + break; + } + break; + } + + /* + * Add 4 to each counter value. For carry propagation + * into the upper 64-bit words, we would need to compare + * the results with 4, but SSE2+ has only _signed_ + * comparisons. Instead, we mask out the low two bits, + * and check whether the remaining bits are zero. + */ + ivx0 = _mm_add_epi64(ivx0, four); + ivx1 = _mm_add_epi64(ivx1, four); + ivx2 = _mm_add_epi64(ivx2, four); + ivx3 = _mm_add_epi64(ivx3, four); + ivx0 = _mm_sub_epi64(ivx0, + _mm_slli_si128(_mm_cmpeq_epi64( + _mm_and_si128(ivx0, notthree), zero), 8)); + ivx1 = _mm_sub_epi64(ivx1, + _mm_slli_si128(_mm_cmpeq_epi64( + _mm_and_si128(ivx1, notthree), zero), 8)); + ivx2 = _mm_sub_epi64(ivx2, + _mm_slli_si128(_mm_cmpeq_epi64( + _mm_and_si128(ivx2, notthree), zero), 8)); + ivx3 = _mm_sub_epi64(ivx3, + _mm_slli_si128(_mm_cmpeq_epi64( + _mm_and_si128(ivx3, notthree), zero), 8)); + } + + /* + * Write back new counter value. The loop took care to put the + * right counter value in ivx0. + */ + _mm_storeu_si128((void *)ctr, _mm_shuffle_epi8(ivx0, erev)); +} + +/* see bearssl_block.h */ +BR_TARGET("sse2,sse4.1,aes") +void +br_aes_x86ni_ctrcbc_mac(const br_aes_x86ni_ctrcbc_keys *ctx, + void *cbcmac, const void *data, size_t len) +{ + const unsigned char *buf; + unsigned num_rounds; + __m128i sk[15], ivx; + unsigned u; + + buf = data; + ivx = _mm_loadu_si128(cbcmac); + num_rounds = ctx->num_rounds; + for (u = 0; u <= num_rounds; u ++) { + sk[u] = _mm_loadu_si128((void *)(ctx->skey.skni + (u << 4))); + } + while (len > 0) { + __m128i x; + + x = _mm_xor_si128(_mm_loadu_si128((void *)buf), ivx); + x = _mm_xor_si128(x, sk[0]); + x = _mm_aesenc_si128(x, sk[1]); + x = _mm_aesenc_si128(x, sk[2]); + x = _mm_aesenc_si128(x, sk[3]); + x = _mm_aesenc_si128(x, sk[4]); + x = _mm_aesenc_si128(x, sk[5]); + x = _mm_aesenc_si128(x, sk[6]); + x = _mm_aesenc_si128(x, sk[7]); + x = _mm_aesenc_si128(x, sk[8]); + x = _mm_aesenc_si128(x, sk[9]); + if (num_rounds == 10) { + x = _mm_aesenclast_si128(x, sk[10]); + } else if (num_rounds == 12) { + x = _mm_aesenc_si128(x, sk[10]); + x = _mm_aesenc_si128(x, sk[11]); + x = _mm_aesenclast_si128(x, sk[12]); + } else { + x = _mm_aesenc_si128(x, sk[10]); + x = _mm_aesenc_si128(x, sk[11]); + x = _mm_aesenc_si128(x, sk[12]); + x = _mm_aesenc_si128(x, sk[13]); + x = _mm_aesenclast_si128(x, sk[14]); + } + ivx = x; + buf += 16; + len -= 16; + } + _mm_storeu_si128(cbcmac, ivx); +} + +/* see bearssl_block.h */ +BR_TARGET("sse2,sse4.1,aes") +void +br_aes_x86ni_ctrcbc_encrypt(const br_aes_x86ni_ctrcbc_keys *ctx, + void *ctr, void *cbcmac, void *data, size_t len) +{ + unsigned char *buf; + unsigned num_rounds; + __m128i sk[15]; + __m128i ivx, cmx; + __m128i erev, zero, one; + unsigned u; + int first_iter; + + num_rounds = ctx->num_rounds; + for (u = 0; u <= num_rounds; u ++) { + sk[u] = _mm_loadu_si128((void *)(ctx->skey.skni + (u << 4))); + } + + /* + * Some SSE2 constants. + */ + erev = _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, + 8, 9, 10, 11, 12, 13, 14, 15); + zero = _mm_setzero_si128(); + one = _mm_set_epi64x(0, 1); + + /* + * Decode the counter in big-endian. + */ + ivx = _mm_shuffle_epi8(_mm_loadu_si128(ctr), erev); + cmx = _mm_loadu_si128(cbcmac); + + buf = data; + first_iter = 1; + while (len > 0) { + __m128i dx, x0, x1; + + /* + * Load initial values: + * dx encrypted block of data + * x0 counter (for CTR encryption) + * x1 input for CBC-MAC + */ + dx = _mm_loadu_si128((void *)buf); + x0 = _mm_shuffle_epi8(ivx, erev); + x1 = cmx; + + x0 = _mm_xor_si128(x0, sk[0]); + x1 = _mm_xor_si128(x1, sk[0]); + x0 = _mm_aesenc_si128(x0, sk[1]); + x1 = _mm_aesenc_si128(x1, sk[1]); + x0 = _mm_aesenc_si128(x0, sk[2]); + x1 = _mm_aesenc_si128(x1, sk[2]); + x0 = _mm_aesenc_si128(x0, sk[3]); + x1 = _mm_aesenc_si128(x1, sk[3]); + x0 = _mm_aesenc_si128(x0, sk[4]); + x1 = _mm_aesenc_si128(x1, sk[4]); + x0 = _mm_aesenc_si128(x0, sk[5]); + x1 = _mm_aesenc_si128(x1, sk[5]); + x0 = _mm_aesenc_si128(x0, sk[6]); + x1 = _mm_aesenc_si128(x1, sk[6]); + x0 = _mm_aesenc_si128(x0, sk[7]); + x1 = _mm_aesenc_si128(x1, sk[7]); + x0 = _mm_aesenc_si128(x0, sk[8]); + x1 = _mm_aesenc_si128(x1, sk[8]); + x0 = _mm_aesenc_si128(x0, sk[9]); + x1 = _mm_aesenc_si128(x1, sk[9]); + if (num_rounds == 10) { + x0 = _mm_aesenclast_si128(x0, sk[10]); + x1 = _mm_aesenclast_si128(x1, sk[10]); + } else if (num_rounds == 12) { + x0 = _mm_aesenc_si128(x0, sk[10]); + x1 = _mm_aesenc_si128(x1, sk[10]); + x0 = _mm_aesenc_si128(x0, sk[11]); + x1 = _mm_aesenc_si128(x1, sk[11]); + x0 = _mm_aesenclast_si128(x0, sk[12]); + x1 = _mm_aesenclast_si128(x1, sk[12]); + } else { + x0 = _mm_aesenc_si128(x0, sk[10]); + x1 = _mm_aesenc_si128(x1, sk[10]); + x0 = _mm_aesenc_si128(x0, sk[11]); + x1 = _mm_aesenc_si128(x1, sk[11]); + x0 = _mm_aesenc_si128(x0, sk[12]); + x1 = _mm_aesenc_si128(x1, sk[12]); + x0 = _mm_aesenc_si128(x0, sk[13]); + x1 = _mm_aesenc_si128(x1, sk[13]); + x0 = _mm_aesenclast_si128(x0, sk[14]); + x1 = _mm_aesenclast_si128(x1, sk[14]); + } + + x0 = _mm_xor_si128(x0, dx); + if (first_iter) { + cmx = _mm_xor_si128(cmx, x0); + first_iter = 0; + } else { + cmx = _mm_xor_si128(x1, x0); + } + _mm_storeu_si128((void *)buf, x0); + + buf += 16; + len -= 16; + + /* + * Increment the counter value. + */ + ivx = _mm_add_epi64(ivx, one); + ivx = _mm_sub_epi64(ivx, + _mm_slli_si128(_mm_cmpeq_epi64(ivx, zero), 8)); + + /* + * If this was the last iteration, then compute the + * extra block encryption to complete CBC-MAC. + */ + if (len == 0) { + cmx = _mm_xor_si128(cmx, sk[0]); + cmx = _mm_aesenc_si128(cmx, sk[1]); + cmx = _mm_aesenc_si128(cmx, sk[2]); + cmx = _mm_aesenc_si128(cmx, sk[3]); + cmx = _mm_aesenc_si128(cmx, sk[4]); + cmx = _mm_aesenc_si128(cmx, sk[5]); + cmx = _mm_aesenc_si128(cmx, sk[6]); + cmx = _mm_aesenc_si128(cmx, sk[7]); + cmx = _mm_aesenc_si128(cmx, sk[8]); + cmx = _mm_aesenc_si128(cmx, sk[9]); + if (num_rounds == 10) { + cmx = _mm_aesenclast_si128(cmx, sk[10]); + } else if (num_rounds == 12) { + cmx = _mm_aesenc_si128(cmx, sk[10]); + cmx = _mm_aesenc_si128(cmx, sk[11]); + cmx = _mm_aesenclast_si128(cmx, sk[12]); + } else { + cmx = _mm_aesenc_si128(cmx, sk[10]); + cmx = _mm_aesenc_si128(cmx, sk[11]); + cmx = _mm_aesenc_si128(cmx, sk[12]); + cmx = _mm_aesenc_si128(cmx, sk[13]); + cmx = _mm_aesenclast_si128(cmx, sk[14]); + } + break; + } + } + + /* + * Write back new counter value and CBC-MAC value. + */ + _mm_storeu_si128(ctr, _mm_shuffle_epi8(ivx, erev)); + _mm_storeu_si128(cbcmac, cmx); +} + +/* see bearssl_block.h */ +BR_TARGET("sse2,sse4.1,aes") +void +br_aes_x86ni_ctrcbc_decrypt(const br_aes_x86ni_ctrcbc_keys *ctx, + void *ctr, void *cbcmac, void *data, size_t len) +{ + unsigned char *buf; + unsigned num_rounds; + __m128i sk[15]; + __m128i ivx, cmx; + __m128i erev, zero, one; + unsigned u; + + num_rounds = ctx->num_rounds; + for (u = 0; u <= num_rounds; u ++) { + sk[u] = _mm_loadu_si128((void *)(ctx->skey.skni + (u << 4))); + } + + /* + * Some SSE2 constants. + */ + erev = _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, + 8, 9, 10, 11, 12, 13, 14, 15); + zero = _mm_setzero_si128(); + one = _mm_set_epi64x(0, 1); + + /* + * Decode the counter in big-endian. + */ + ivx = _mm_shuffle_epi8(_mm_loadu_si128(ctr), erev); + cmx = _mm_loadu_si128(cbcmac); + + buf = data; + while (len > 0) { + __m128i dx, x0, x1; + + /* + * Load initial values: + * dx encrypted block of data + * x0 counter (for CTR encryption) + * x1 input for CBC-MAC + */ + dx = _mm_loadu_si128((void *)buf); + x0 = _mm_shuffle_epi8(ivx, erev); + x1 = _mm_xor_si128(cmx, dx); + + x0 = _mm_xor_si128(x0, sk[0]); + x1 = _mm_xor_si128(x1, sk[0]); + x0 = _mm_aesenc_si128(x0, sk[1]); + x1 = _mm_aesenc_si128(x1, sk[1]); + x0 = _mm_aesenc_si128(x0, sk[2]); + x1 = _mm_aesenc_si128(x1, sk[2]); + x0 = _mm_aesenc_si128(x0, sk[3]); + x1 = _mm_aesenc_si128(x1, sk[3]); + x0 = _mm_aesenc_si128(x0, sk[4]); + x1 = _mm_aesenc_si128(x1, sk[4]); + x0 = _mm_aesenc_si128(x0, sk[5]); + x1 = _mm_aesenc_si128(x1, sk[5]); + x0 = _mm_aesenc_si128(x0, sk[6]); + x1 = _mm_aesenc_si128(x1, sk[6]); + x0 = _mm_aesenc_si128(x0, sk[7]); + x1 = _mm_aesenc_si128(x1, sk[7]); + x0 = _mm_aesenc_si128(x0, sk[8]); + x1 = _mm_aesenc_si128(x1, sk[8]); + x0 = _mm_aesenc_si128(x0, sk[9]); + x1 = _mm_aesenc_si128(x1, sk[9]); + if (num_rounds == 10) { + x0 = _mm_aesenclast_si128(x0, sk[10]); + x1 = _mm_aesenclast_si128(x1, sk[10]); + } else if (num_rounds == 12) { + x0 = _mm_aesenc_si128(x0, sk[10]); + x1 = _mm_aesenc_si128(x1, sk[10]); + x0 = _mm_aesenc_si128(x0, sk[11]); + x1 = _mm_aesenc_si128(x1, sk[11]); + x0 = _mm_aesenclast_si128(x0, sk[12]); + x1 = _mm_aesenclast_si128(x1, sk[12]); + } else { + x0 = _mm_aesenc_si128(x0, sk[10]); + x1 = _mm_aesenc_si128(x1, sk[10]); + x0 = _mm_aesenc_si128(x0, sk[11]); + x1 = _mm_aesenc_si128(x1, sk[11]); + x0 = _mm_aesenc_si128(x0, sk[12]); + x1 = _mm_aesenc_si128(x1, sk[12]); + x0 = _mm_aesenc_si128(x0, sk[13]); + x1 = _mm_aesenc_si128(x1, sk[13]); + x0 = _mm_aesenclast_si128(x0, sk[14]); + x1 = _mm_aesenclast_si128(x1, sk[14]); + } + x0 = _mm_xor_si128(x0, dx); + cmx = x1; + _mm_storeu_si128((void *)buf, x0); + + buf += 16; + len -= 16; + + /* + * Increment the counter value. + */ + ivx = _mm_add_epi64(ivx, one); + ivx = _mm_sub_epi64(ivx, + _mm_slli_si128(_mm_cmpeq_epi64(ivx, zero), 8)); + } + + /* + * Write back new counter value and CBC-MAC value. + */ + _mm_storeu_si128(ctr, _mm_shuffle_epi8(ivx, erev)); + _mm_storeu_si128(cbcmac, cmx); +} + +BR_TARGETS_X86_DOWN + +/* see bearssl_block.h */ +const br_block_ctrcbc_class br_aes_x86ni_ctrcbc_vtable = { + sizeof(br_aes_x86ni_ctrcbc_keys), + 16, + 4, + (void (*)(const br_block_ctrcbc_class **, const void *, size_t)) + &br_aes_x86ni_ctrcbc_init, + (void (*)(const br_block_ctrcbc_class *const *, + void *, void *, void *, size_t)) + &br_aes_x86ni_ctrcbc_encrypt, + (void (*)(const br_block_ctrcbc_class *const *, + void *, void *, void *, size_t)) + &br_aes_x86ni_ctrcbc_decrypt, + (void (*)(const br_block_ctrcbc_class *const *, + void *, void *, size_t)) + &br_aes_x86ni_ctrcbc_ctr, + (void (*)(const br_block_ctrcbc_class *const *, + void *, const void *, size_t)) + &br_aes_x86ni_ctrcbc_mac +}; + +#else + +/* see bearssl_block.h */ +const br_block_ctrcbc_class * +br_aes_x86ni_ctrcbc_get_vtable(void) +{ + return NULL; +} + +#endif diff --git a/test/test_crypto.c b/test/test_crypto.c index bea236b..e37034c 100644 --- a/test/test_crypto.c +++ b/test/test_crypto.c @@ -3411,6 +3411,224 @@ test_AES_pwr8(void) } } +/* + * Custom CTR + CBC-MAC AES implementation. Can also do CTR-only, and + * CBC-MAC-only. The 'aes_big' implementation (CTR) is used. This is + * meant for comparisons. + * + * If 'ctr' is NULL then no encryption/decryption is done; otherwise, + * CTR encryption/decryption is performed (full-block counter) and the + * 'ctr' array is updated with the new counter value. + * + * If 'cbcmac' is NULL then no CBC-MAC is done; otherwise, CBC-MAC is + * applied on the encrypted data, with 'cbcmac' as IV and destination + * buffer for the output. If 'ctr' is not NULL and 'encrypt' is non-zero, + * then CBC-MAC is computed over the result of CTR processing; otherwise, + * CBC-MAC is computed over the input data itself. + */ +static void +do_aes_ctrcbc(const void *key, size_t key_len, int encrypt, + void *ctr, void *cbcmac, unsigned char *data, size_t len) +{ + br_aes_big_ctr_keys bc; + int i; + + br_aes_big_ctr_init(&bc, key, key_len); + for (i = 0; i < 2; i ++) { + /* + * CBC-MAC is computed on the encrypted data, so in + * first pass if decrypting, second pass if encrypting. + */ + if (cbcmac != NULL + && ((encrypt && i == 1) || (!encrypt && i == 0))) + { + unsigned char zz[16]; + size_t u; + + memcpy(zz, cbcmac, sizeof zz); + for (u = 0; u < len; u += 16) { + unsigned char tmp[16]; + size_t v; + + for (v = 0; v < 16; v ++) { + tmp[v] = zz[v] ^ data[u + v]; + } + memset(zz, 0, sizeof zz); + br_aes_big_ctr_run(&bc, + tmp, br_dec32be(tmp + 12), zz, 16); + } + memcpy(cbcmac, zz, sizeof zz); + } + + /* + * CTR encryption/decryption is done only in the first pass. + * We process data block per block, because the CTR-only + * class uses a 32-bit counter, while the CTR+CBC-MAC + * class uses a 128-bit counter. + */ + if (ctr != NULL && i == 0) { + unsigned char zz[16]; + size_t u; + + memcpy(zz, ctr, sizeof zz); + for (u = 0; u < len; u += 16) { + int i; + + br_aes_big_ctr_run(&bc, + zz, br_dec32be(zz + 12), data + u, 16); + for (i = 15; i >= 0; i --) { + zz[i] = (zz[i] + 1) & 0xFF; + if (zz[i] != 0) { + break; + } + } + } + memcpy(ctr, zz, sizeof zz); + } + } +} + +static void +test_AES_CTRCBC_inner(const char *name, const br_block_ctrcbc_class *vt) +{ + br_hmac_drbg_context rng; + size_t key_len; + + printf("Test AES CTR/CBC-MAC %s: ", name); + fflush(stdout); + + br_hmac_drbg_init(&rng, &br_sha256_vtable, name, strlen(name)); + for (key_len = 16; key_len <= 32; key_len += 8) { + br_aes_gen_ctrcbc_keys bc; + unsigned char key[32]; + size_t data_len; + + br_hmac_drbg_generate(&rng, key, key_len); + vt->init(&bc.vtable, key, key_len); + for (data_len = 0; data_len <= 512; data_len += 16) { + unsigned char plain[512]; + unsigned char data1[sizeof plain]; + unsigned char data2[sizeof plain]; + unsigned char ctr[16], cbcmac[16]; + unsigned char ctr1[16], cbcmac1[16]; + unsigned char ctr2[16], cbcmac2[16]; + int i; + + br_hmac_drbg_generate(&rng, plain, data_len); + + for (i = 0; i <= 16; i ++) { + if (i == 0) { + br_hmac_drbg_generate(&rng, ctr, 16); + } else { + memset(ctr, 0, i - 1); + memset(ctr + i - 1, 0xFF, 17 - i); + } + br_hmac_drbg_generate(&rng, cbcmac, 16); + + memcpy(data1, plain, data_len); + memcpy(ctr1, ctr, 16); + vt->ctr(&bc.vtable, ctr1, data1, data_len); + memcpy(data2, plain, data_len); + memcpy(ctr2, ctr, 16); + do_aes_ctrcbc(key, key_len, 1, + ctr2, NULL, data2, data_len); + check_equals("CTR-only data", + data1, data2, data_len); + check_equals("CTR-only counter", + ctr1, ctr2, 16); + + memcpy(data1, plain, data_len); + memcpy(cbcmac1, cbcmac, 16); + vt->mac(&bc.vtable, cbcmac1, data1, data_len); + memcpy(data2, plain, data_len); + memcpy(cbcmac2, cbcmac, 16); + do_aes_ctrcbc(key, key_len, 1, + NULL, cbcmac2, data2, data_len); + check_equals("CBC-MAC-only", + cbcmac1, cbcmac2, 16); + + memcpy(data1, plain, data_len); + memcpy(ctr1, ctr, 16); + memcpy(cbcmac1, cbcmac, 16); + vt->encrypt(&bc.vtable, + ctr1, cbcmac1, data1, data_len); + memcpy(data2, plain, data_len); + memcpy(ctr2, ctr, 16); + memcpy(cbcmac2, cbcmac, 16); + do_aes_ctrcbc(key, key_len, 1, + ctr2, cbcmac2, data2, data_len); + check_equals("encrypt: combined data", + data1, data2, data_len); + check_equals("encrypt: combined counter", + ctr1, ctr2, 16); + check_equals("encrypt: combined CBC-MAC", + cbcmac1, cbcmac2, 16); + + memcpy(ctr1, ctr, 16); + memcpy(cbcmac1, cbcmac, 16); + vt->decrypt(&bc.vtable, + ctr1, cbcmac1, data1, data_len); + memcpy(ctr2, ctr, 16); + memcpy(cbcmac2, cbcmac, 16); + do_aes_ctrcbc(key, key_len, 0, + ctr2, cbcmac2, data2, data_len); + check_equals("decrypt: combined data", + data1, data2, data_len); + check_equals("decrypt: combined counter", + ctr1, ctr2, 16); + check_equals("decrypt: combined CBC-MAC", + cbcmac1, cbcmac2, 16); + } + + printf("."); + fflush(stdout); + } + + printf(" "); + fflush(stdout); + } + + printf("done.\n"); + fflush(stdout); +} + +static void +test_AES_CTRCBC_big(void) +{ + test_AES_CTRCBC_inner("big", &br_aes_big_ctrcbc_vtable); +} + +static void +test_AES_CTRCBC_small(void) +{ + test_AES_CTRCBC_inner("small", &br_aes_small_ctrcbc_vtable); +} + +static void +test_AES_CTRCBC_ct(void) +{ + test_AES_CTRCBC_inner("ct", &br_aes_ct_ctrcbc_vtable); +} + +static void +test_AES_CTRCBC_ct64(void) +{ + test_AES_CTRCBC_inner("ct64", &br_aes_ct64_ctrcbc_vtable); +} + +static void +test_AES_CTRCBC_x86ni(void) +{ + const br_block_ctrcbc_class *vt; + + vt = br_aes_x86ni_ctrcbc_get_vtable(); + if (vt != NULL) { + test_AES_CTRCBC_inner("x86ni", vt); + } else { + printf("Test AES CTR/CBC-MAC x86ni: UNAVAILABLE\n"); + } +} + /* * DES known-answer tests. Order: plaintext, key, ciphertext. * (mostly from NIST SP 800-20). @@ -5077,7 +5295,7 @@ test_GCM(void) br_aes_ct_ctr_keys bc; br_gcm_context gc; unsigned char tmp[100], out[16]; - size_t v; + size_t v, tag_len; key_len = hextobin(key, KAT_GCM[u]); plain_len = hextobin(plain, KAT_GCM[u + 1]); @@ -5167,6 +5385,268 @@ test_GCM(void) } } + /* + * Tag truncation. + */ + for (tag_len = 1; tag_len <= 16; tag_len ++) { + memset(out, 0x54, sizeof out); + memcpy(tmp, plain, plain_len); + br_gcm_reset(&gc, iv, iv_len); + br_gcm_aad_inject(&gc, aad, aad_len); + br_gcm_flip(&gc); + br_gcm_run(&gc, 1, tmp, plain_len); + br_gcm_get_tag_trunc(&gc, out, tag_len); + check_equals("KAT GCM 8", out, tag, tag_len); + for (v = tag_len; v < sizeof out; v ++) { + if (out[v] != 0x54) { + fprintf(stderr, "overflow on tag\n"); + exit(EXIT_FAILURE); + } + } + + memcpy(tmp, plain, plain_len); + br_gcm_reset(&gc, iv, iv_len); + br_gcm_aad_inject(&gc, aad, aad_len); + br_gcm_flip(&gc); + br_gcm_run(&gc, 1, tmp, plain_len); + if (!br_gcm_check_tag_trunc(&gc, out, tag_len)) { + fprintf(stderr, "Tag not verified (3)\n"); + exit(EXIT_FAILURE); + } + } + + printf("."); + fflush(stdout); + } + + printf(" done.\n"); + fflush(stdout); +} + +/* + * From "The EAX Mode of Operation (A Two-Pass Authenticated Encryption + * Scheme Optimized for Simplicity and Efficiency)" (Bellare, Rogaway, + * Wagner), presented at FSE 2004. Full article is available at: + * http://web.cs.ucdavis.edu/~rogaway/papers/eax.html + * + * EAX specification concatenates the authentication tag at the end of + * the ciphertext; in our API and the vectors below, the tag is separate. + * + * Order is: plaintext, key, nonce, header, ciphertext, tag. + */ +static const char *const KAT_EAX[] = { + "", + "233952dee4d5ed5f9b9c6d6ff80ff478", + "62ec67f9c3a4a407fcb2a8c49031a8b3", + "6bfb914fd07eae6b", + "", + "e037830e8389f27b025a2d6527e79d01", + + "f7fb", + "91945d3f4dcbee0bf45ef52255f095a4", + "becaf043b0a23d843194ba972c66debd", + "fa3bfd4806eb53fa", + "19dd", + "5c4c9331049d0bdab0277408f67967e5", + + "1a47cb4933", + "01f74ad64077f2e704c0f60ada3dd523", + "70c3db4f0d26368400a10ed05d2bff5e", + "234a3463c1264ac6", + "d851d5bae0", + "3a59f238a23e39199dc9266626c40f80", + + "481c9e39b1", + "d07cf6cbb7f313bdde66b727afd3c5e8", + "8408dfff3c1a2b1292dc199e46b7d617", + "33cce2eabff5a79d", + "632a9d131a", + "d4c168a4225d8e1ff755939974a7bede", + + "40d0c07da5e4", + "35b6d0580005bbc12b0587124557d2c2", + "fdb6b06676eedc5c61d74276e1f8e816", + "aeb96eaebe2970e9", + "071dfe16c675", + "cb0677e536f73afe6a14b74ee49844dd", + + "4de3b35c3fc039245bd1fb7d", + "bd8e6e11475e60b268784c38c62feb22", + "6eac5c93072d8e8513f750935e46da1b", + "d4482d1ca78dce0f", + "835bb4f15d743e350e728414", + "abb8644fd6ccb86947c5e10590210a4f", + + "8b0a79306c9ce7ed99dae4f87f8dd61636", + "7c77d6e813bed5ac98baa417477a2e7d", + "1a8c98dcd73d38393b2bf1569deefc19", + "65d2017990d62528", + "02083e3979da014812f59f11d52630da30", + "137327d10649b0aa6e1c181db617d7f2", + + "1bda122bce8a8dbaf1877d962b8592dd2d56", + "5fff20cafab119ca2fc73549e20f5b0d", + "dde59b97d722156d4d9aff2bc7559826", + "54b9f04e6a09189a", + "2ec47b2c4954a489afc7ba4897edcdae8cc3", + "3b60450599bd02c96382902aef7f832a", + + "6cf36720872b8513f6eab1a8a44438d5ef11", + "a4a4782bcffd3ec5e7ef6d8c34a56123", + "b781fcf2f75fa5a8de97a9ca48e522ec", + "899a175897561d7e", + "0de18fd0fdd91e7af19f1d8ee8733938b1e8", + "e7f6d2231618102fdb7fe55ff1991700", + + "ca40d7446e545ffaed3bd12a740a659ffbbb3ceab7", + "8395fcf1e95bebd697bd010bc766aac3", + "22e7add93cfc6393c57ec0b3c17d6b44", + "126735fcc320d25a", + "cb8920f87a6c75cff39627b56e3ed197c552d295a7", + "cfc46afc253b4652b1af3795b124ab6e", + + NULL +}; + +static void +test_EAX_inner(const char *name, const br_block_ctrcbc_class *vt) +{ + size_t u; + + printf("Test EAX %s: ", name); + fflush(stdout); + + for (u = 0; KAT_EAX[u]; u += 6) { + unsigned char plain[100]; + unsigned char key[32]; + unsigned char nonce[100]; + unsigned char aad[100]; + unsigned char cipher[100]; + unsigned char tag[100]; + size_t plain_len, key_len, nonce_len, aad_len; + br_aes_gen_ctrcbc_keys bc; + br_eax_context ec; + unsigned char tmp[100], out[16]; + size_t v, tag_len; + + plain_len = hextobin(plain, KAT_EAX[u]); + key_len = hextobin(key, KAT_EAX[u + 1]); + nonce_len = hextobin(nonce, KAT_EAX[u + 2]); + aad_len = hextobin(aad, KAT_EAX[u + 3]); + hextobin(cipher, KAT_EAX[u + 4]); + hextobin(tag, KAT_EAX[u + 5]); + + vt->init(&bc.vtable, key, key_len); + br_eax_init(&ec, &bc.vtable); + + memset(tmp, 0x54, sizeof tmp); + + /* + * Basic operation. + */ + memcpy(tmp, plain, plain_len); + br_eax_reset(&ec, nonce, nonce_len); + br_eax_aad_inject(&ec, aad, aad_len); + br_eax_flip(&ec); + br_eax_run(&ec, 1, tmp, plain_len); + br_eax_get_tag(&ec, out); + check_equals("KAT EAX 1", tmp, cipher, plain_len); + check_equals("KAT EAX 2", out, tag, 16); + + br_eax_reset(&ec, nonce, nonce_len); + br_eax_aad_inject(&ec, aad, aad_len); + br_eax_flip(&ec); + br_eax_run(&ec, 0, tmp, plain_len); + check_equals("KAT EAX 3", tmp, plain, plain_len); + if (!br_eax_check_tag(&ec, tag)) { + fprintf(stderr, "Tag not verified (1)\n"); + exit(EXIT_FAILURE); + } + + for (v = plain_len; v < sizeof tmp; v ++) { + if (tmp[v] != 0x54) { + fprintf(stderr, "overflow on data\n"); + exit(EXIT_FAILURE); + } + } + + /* + * Byte-by-byte injection. + */ + br_eax_reset(&ec, nonce, nonce_len); + for (v = 0; v < aad_len; v ++) { + br_eax_aad_inject(&ec, aad + v, 1); + } + br_eax_flip(&ec); + for (v = 0; v < plain_len; v ++) { + br_eax_run(&ec, 1, tmp + v, 1); + } + check_equals("KAT EAX 4", tmp, cipher, plain_len); + if (!br_eax_check_tag(&ec, tag)) { + fprintf(stderr, "Tag not verified (2)\n"); + exit(EXIT_FAILURE); + } + + br_eax_reset(&ec, nonce, nonce_len); + for (v = 0; v < aad_len; v ++) { + br_eax_aad_inject(&ec, aad + v, 1); + } + br_eax_flip(&ec); + for (v = 0; v < plain_len; v ++) { + br_eax_run(&ec, 0, tmp + v, 1); + } + br_eax_get_tag(&ec, out); + check_equals("KAT EAX 5", tmp, plain, plain_len); + check_equals("KAT EAX 6", out, tag, 16); + + /* + * Check that alterations are detected. + */ + for (v = 0; v < aad_len; v ++) { + memcpy(tmp, cipher, plain_len); + br_eax_reset(&ec, nonce, nonce_len); + aad[v] ^= 0x04; + br_eax_aad_inject(&ec, aad, aad_len); + aad[v] ^= 0x04; + br_eax_flip(&ec); + br_eax_run(&ec, 0, tmp, plain_len); + check_equals("KAT EAX 7", tmp, plain, plain_len); + if (br_eax_check_tag(&ec, tag)) { + fprintf(stderr, "Tag should have changed\n"); + exit(EXIT_FAILURE); + } + } + + /* + * Tag truncation. + */ + for (tag_len = 1; tag_len <= 16; tag_len ++) { + memset(out, 0x54, sizeof out); + memcpy(tmp, plain, plain_len); + br_eax_reset(&ec, nonce, nonce_len); + br_eax_aad_inject(&ec, aad, aad_len); + br_eax_flip(&ec); + br_eax_run(&ec, 1, tmp, plain_len); + br_eax_get_tag_trunc(&ec, out, tag_len); + check_equals("KAT EAX 8", out, tag, tag_len); + for (v = tag_len; v < sizeof out; v ++) { + if (out[v] != 0x54) { + fprintf(stderr, "overflow on tag\n"); + exit(EXIT_FAILURE); + } + } + + memcpy(tmp, plain, plain_len); + br_eax_reset(&ec, nonce, nonce_len); + br_eax_aad_inject(&ec, aad, aad_len); + br_eax_flip(&ec); + br_eax_run(&ec, 1, tmp, plain_len); + if (!br_eax_check_tag_trunc(&ec, out, tag_len)) { + fprintf(stderr, "Tag not verified (3)\n"); + exit(EXIT_FAILURE); + } + } + printf("."); fflush(stdout); } @@ -5175,6 +5655,236 @@ test_GCM(void) fflush(stdout); } +static void +test_EAX(void) +{ + const br_block_ctrcbc_class *x_ctrcbc; + + test_EAX_inner("aes_big", &br_aes_big_ctrcbc_vtable); + test_EAX_inner("aes_small", &br_aes_small_ctrcbc_vtable); + test_EAX_inner("aes_ct", &br_aes_ct_ctrcbc_vtable); + test_EAX_inner("aes_ct64", &br_aes_ct64_ctrcbc_vtable); + + x_ctrcbc = br_aes_x86ni_ctrcbc_get_vtable(); + if (x_ctrcbc != NULL) { + test_EAX_inner("aes_x86ni", x_ctrcbc); + } else { + printf("Test EAX aes_x86ni: UNAVAILABLE\n"); + } +} + +/* + * From NIST SP 800-38C, appendix C. + * + * CCM specification concatenates the authentication tag at the end of + * the ciphertext; in our API and the vectors below, the tag is separate. + * + * Order is: key, nonce, aad, plaintext, ciphertext, tag. + */ +static const char *const KAT_CCM[] = { + "404142434445464748494a4b4c4d4e4f", + "10111213141516", + "0001020304050607", + "20212223", + "7162015b", + "4dac255d", + + "404142434445464748494a4b4c4d4e4f", + "1011121314151617", + "000102030405060708090a0b0c0d0e0f", + "202122232425262728292a2b2c2d2e2f", + "d2a1f0e051ea5f62081a7792073d593d", + "1fc64fbfaccd", + + "404142434445464748494a4b4c4d4e4f", + "101112131415161718191a1b", + "000102030405060708090a0b0c0d0e0f10111213", + "202122232425262728292a2b2c2d2e2f3031323334353637", + "e3b201a9f5b71a7a9b1ceaeccd97e70b6176aad9a4428aa5", + "484392fbc1b09951", + + "404142434445464748494a4b4c4d4e4f", + "101112131415161718191a1b1c", + NULL, + "202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f", + "69915dad1e84c6376a68c2967e4dab615ae0fd1faec44cc484828529463ccf72", + "b4ac6bec93e8598e7f0dadbcea5b", + + NULL +}; + +static void +test_CCM_inner(const char *name, const br_block_ctrcbc_class *vt) +{ + size_t u; + + printf("Test CCM %s: ", name); + fflush(stdout); + + for (u = 0; KAT_CCM[u]; u += 6) { + unsigned char plain[100]; + unsigned char key[32]; + unsigned char nonce[100]; + unsigned char aad_buf[100], *aad; + unsigned char cipher[100]; + unsigned char tag[100]; + size_t plain_len, key_len, nonce_len, aad_len, tag_len; + br_aes_gen_ctrcbc_keys bc; + br_ccm_context ec; + unsigned char tmp[100], out[16]; + size_t v; + + key_len = hextobin(key, KAT_CCM[u]); + nonce_len = hextobin(nonce, KAT_CCM[u + 1]); + if (KAT_CCM[u + 2] == NULL) { + aad_len = 65536; + aad = malloc(aad_len); + if (aad == NULL) { + fprintf(stderr, "OOM error\n"); + exit(EXIT_FAILURE); + } + for (v = 0; v < 65536; v ++) { + aad[v] = (unsigned char)v; + } + } else { + aad = aad_buf; + aad_len = hextobin(aad, KAT_CCM[u + 2]); + } + plain_len = hextobin(plain, KAT_CCM[u + 3]); + hextobin(cipher, KAT_CCM[u + 4]); + tag_len = hextobin(tag, KAT_CCM[u + 5]); + + vt->init(&bc.vtable, key, key_len); + br_ccm_init(&ec, &bc.vtable); + + memset(tmp, 0x54, sizeof tmp); + + /* + * Basic operation. + */ + memcpy(tmp, plain, plain_len); + if (!br_ccm_reset(&ec, nonce, nonce_len, + aad_len, plain_len, tag_len)) + { + fprintf(stderr, "CCM reset failed\n"); + exit(EXIT_FAILURE); + } + br_ccm_aad_inject(&ec, aad, aad_len); + br_ccm_flip(&ec); + br_ccm_run(&ec, 1, tmp, plain_len); + if (br_ccm_get_tag(&ec, out) != tag_len) { + fprintf(stderr, "CCM returned wrong tag length\n"); + exit(EXIT_FAILURE); + } + check_equals("KAT CCM 1", tmp, cipher, plain_len); + check_equals("KAT CCM 2", out, tag, tag_len); + + br_ccm_reset(&ec, nonce, nonce_len, + aad_len, plain_len, tag_len); + br_ccm_aad_inject(&ec, aad, aad_len); + br_ccm_flip(&ec); + br_ccm_run(&ec, 0, tmp, plain_len); + check_equals("KAT CCM 3", tmp, plain, plain_len); + if (!br_ccm_check_tag(&ec, tag)) { + fprintf(stderr, "Tag not verified (1)\n"); + exit(EXIT_FAILURE); + } + + for (v = plain_len; v < sizeof tmp; v ++) { + if (tmp[v] != 0x54) { + fprintf(stderr, "overflow on data\n"); + exit(EXIT_FAILURE); + } + } + + /* + * Byte-by-byte injection. + */ + br_ccm_reset(&ec, nonce, nonce_len, + aad_len, plain_len, tag_len); + for (v = 0; v < aad_len; v ++) { + br_ccm_aad_inject(&ec, aad + v, 1); + } + br_ccm_flip(&ec); + for (v = 0; v < plain_len; v ++) { + br_ccm_run(&ec, 1, tmp + v, 1); + } + check_equals("KAT CCM 4", tmp, cipher, plain_len); + if (!br_ccm_check_tag(&ec, tag)) { + fprintf(stderr, "Tag not verified (2)\n"); + exit(EXIT_FAILURE); + } + + br_ccm_reset(&ec, nonce, nonce_len, + aad_len, plain_len, tag_len); + for (v = 0; v < aad_len; v ++) { + br_ccm_aad_inject(&ec, aad + v, 1); + } + br_ccm_flip(&ec); + for (v = 0; v < plain_len; v ++) { + br_ccm_run(&ec, 0, tmp + v, 1); + } + br_ccm_get_tag(&ec, out); + check_equals("KAT CCM 5", tmp, plain, plain_len); + check_equals("KAT CCM 6", out, tag, tag_len); + + /* + * Check that alterations are detected. + */ + for (v = 0; v < aad_len; v ++) { + memcpy(tmp, cipher, plain_len); + br_ccm_reset(&ec, nonce, nonce_len, + aad_len, plain_len, tag_len); + aad[v] ^= 0x04; + br_ccm_aad_inject(&ec, aad, aad_len); + aad[v] ^= 0x04; + br_ccm_flip(&ec); + br_ccm_run(&ec, 0, tmp, plain_len); + check_equals("KAT CCM 7", tmp, plain, plain_len); + if (br_ccm_check_tag(&ec, tag)) { + fprintf(stderr, "Tag should have changed\n"); + exit(EXIT_FAILURE); + } + + /* + * When the AAD is really big, we don't want to do + * the complete quadratic operation. + */ + if (v >= 32) { + break; + } + } + + if (aad != aad_buf) { + free(aad); + } + + printf("."); + fflush(stdout); + } + + printf(" done.\n"); + fflush(stdout); +} + +static void +test_CCM(void) +{ + const br_block_ctrcbc_class *x_ctrcbc; + + test_CCM_inner("aes_big", &br_aes_big_ctrcbc_vtable); + test_CCM_inner("aes_small", &br_aes_small_ctrcbc_vtable); + test_CCM_inner("aes_ct", &br_aes_ct_ctrcbc_vtable); + test_CCM_inner("aes_ct64", &br_aes_ct64_ctrcbc_vtable); + + x_ctrcbc = br_aes_x86ni_ctrcbc_get_vtable(); + if (x_ctrcbc != NULL) { + test_CCM_inner("aes_x86ni", x_ctrcbc); + } else { + printf("Test CCM aes_x86ni: UNAVAILABLE\n"); + } +} + static void test_EC_inner(const char *sk, const char *sU, const br_ec_impl *impl, int curve) @@ -6201,6 +6911,11 @@ static const struct { STU(AES_ct64), STU(AES_pwr8), STU(AES_x86ni), + STU(AES_CTRCBC_big), + STU(AES_CTRCBC_small), + STU(AES_CTRCBC_ct), + STU(AES_CTRCBC_ct64), + STU(AES_CTRCBC_x86ni), STU(DES_tab), STU(DES_ct), STU(ChaCha20_ct), @@ -6218,6 +6933,8 @@ static const struct { STU(GHASH_ctmul64), STU(GHASH_pclmul), STU(GHASH_pwr8), + STU(CCM), + STU(EAX), STU(GCM), STU(EC_prime_i15), STU(EC_prime_i31), diff --git a/test/test_speed.c b/test/test_speed.c index 296e914..245a840 100644 --- a/test/test_speed.c +++ b/test/test_speed.c @@ -443,6 +443,82 @@ test_speed_poly1305_i15(void) test_speed_poly1305_inner("Poly1305 (i15)", &br_poly1305_i15_run); } +static void +test_speed_eax_inner(char *name, + const br_block_ctrcbc_class *vt, size_t key_len) +{ + unsigned char buf[8192], key[32], nonce[16], aad[16], tag[16]; + int i; + long num; + br_aes_gen_ctrcbc_keys ac; + br_eax_context ec; + + memset(key, 'K', key_len); + memset(nonce, 'N', sizeof nonce); + memset(aad, 'A', sizeof aad); + memset(buf, 'T', sizeof buf); + for (i = 0; i < 10; i ++) { + vt->init(&ac.vtable, key, key_len); + br_eax_init(&ec, &ac.vtable); + br_eax_reset(&ec, nonce, sizeof nonce); + br_eax_aad_inject(&ec, aad, sizeof aad); + br_eax_flip(&ec); + br_eax_run(&ec, 1, buf, sizeof buf); + br_eax_get_tag(&ec, tag); + } + num = 10; + for (;;) { + clock_t begin, end; + double tt; + long k; + + begin = clock(); + for (k = num; k > 0; k --) { + vt->init(&ac.vtable, key, key_len); + br_eax_init(&ec, &ac.vtable); + br_eax_reset(&ec, nonce, sizeof nonce); + br_eax_aad_inject(&ec, aad, sizeof aad); + br_eax_flip(&ec); + br_eax_run(&ec, 1, buf, sizeof buf); + br_eax_get_tag(&ec, tag); + } + end = clock(); + tt = (double)(end - begin) / CLOCKS_PER_SEC; + if (tt >= 2.0) { + printf("%-30s %8.2f MB/s\n", name, + ((double)sizeof buf) * (double)num + / (tt * 1000000.0)); + fflush(stdout); + return; + } + num <<= 1; + } +} + +#define SPEED_EAX(Algo, algo, keysize, impl) \ +static void \ +test_speed_eax_ ## algo ## keysize ## _ ## impl(void) \ +{ \ + test_speed_eax_inner("EAX " #Algo "-" #keysize "(" #impl ")", \ + &br_ ## algo ## _ ## impl ## _ctrcbc_vtable, (keysize) >> 3); \ +} + +SPEED_EAX(AES, aes, 128, big) +SPEED_EAX(AES, aes, 128, small) +SPEED_EAX(AES, aes, 128, ct) +SPEED_EAX(AES, aes, 128, ct64) +SPEED_EAX(AES, aes, 128, x86ni) +SPEED_EAX(AES, aes, 192, big) +SPEED_EAX(AES, aes, 192, small) +SPEED_EAX(AES, aes, 192, ct) +SPEED_EAX(AES, aes, 192, ct64) +SPEED_EAX(AES, aes, 192, x86ni) +SPEED_EAX(AES, aes, 256, big) +SPEED_EAX(AES, aes, 256, small) +SPEED_EAX(AES, aes, 256, ct) +SPEED_EAX(AES, aes, 256, ct64) +SPEED_EAX(AES, aes, 256, x86ni) + static const unsigned char RSA_N[] = { 0xE9, 0xF2, 0x4A, 0x2F, 0x96, 0xDF, 0x0A, 0x23, 0x01, 0x85, 0xF1, 0x2C, 0xB2, 0xA8, 0xEF, 0x23, @@ -1300,6 +1376,22 @@ static const struct { STU(poly1305_ctmulq), STU(poly1305_i15), + STU(eax_aes128_big), + STU(eax_aes192_big), + STU(eax_aes256_big), + STU(eax_aes128_small), + STU(eax_aes192_small), + STU(eax_aes256_small), + STU(eax_aes128_ct), + STU(eax_aes192_ct), + STU(eax_aes256_ct), + STU(eax_aes128_ct64), + STU(eax_aes192_ct64), + STU(eax_aes256_ct64), + STU(eax_aes128_x86ni), + STU(eax_aes192_x86ni), + STU(eax_aes256_x86ni), + STU(rsa_i15), STU(rsa_i31), STU(rsa_i32),