Added implementation of keying material export (RFC 5705) (API for PRF implementation...
[BearSSL] / src / symcipher / des_ct.c
1 /*
2 * Copyright (c) 2016 Thomas Pornin <pornin@bolet.org>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining
5 * a copy of this software and associated documentation files (the
6 * "Software"), to deal in the Software without restriction, including
7 * without limitation the rights to use, copy, modify, merge, publish,
8 * distribute, sublicense, and/or sell copies of the Software, and to
9 * permit persons to whom the Software is furnished to do so, subject to
10 * the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be
13 * included in all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
19 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
20 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
21 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24
25 #include "inner.h"
26
27 /*
28 * During key schedule, we need to apply bit extraction PC-2 then permute
29 * things into our bitslice representation. PC-2 extracts 48 bits out
30 * of two 28-bit words (kl and kr), and we store these bits into two
31 * 32-bit words sk0 and sk1.
32 *
33 * -- bit 16+x of sk0 comes from bit QL0[x] of kl
34 * -- bit x of sk0 comes from bit QR0[x] of kr
35 * -- bit 16+x of sk1 comes from bit QL1[x] of kl
36 * -- bit x of sk1 comes from bit QR1[x] of kr
37 */
38
39 static const unsigned char QL0[] = {
40 17, 4, 27, 23, 13, 22, 7, 18,
41 16, 24, 2, 20, 1, 8, 15, 26
42 };
43
44 static const unsigned char QR0[] = {
45 25, 19, 9, 1, 5, 11, 23, 8,
46 17, 0, 22, 3, 6, 20, 27, 24
47 };
48
49 static const unsigned char QL1[] = {
50 28, 28, 14, 11, 28, 28, 25, 0,
51 28, 28, 5, 9, 28, 28, 12, 21
52 };
53
54 static const unsigned char QR1[] = {
55 28, 28, 15, 4, 28, 28, 26, 16,
56 28, 28, 12, 7, 28, 28, 10, 14
57 };
58
59 /*
60 * 32-bit rotation. The C compiler is supposed to recognize it as a
61 * rotation and use the local architecture rotation opcode (if available).
62 */
63 static inline uint32_t
64 rotl(uint32_t x, int n)
65 {
66 return (x << n) | (x >> (32 - n));
67 }
68
69 /*
70 * Compute key schedule for 8 key bytes (produces 32 subkey words).
71 */
72 static void
73 keysched_unit(uint32_t *skey, const void *key)
74 {
75 int i;
76
77 br_des_keysched_unit(skey, key);
78
79 /*
80 * Apply PC-2 + bitslicing.
81 */
82 for (i = 0; i < 16; i ++) {
83 uint32_t kl, kr, sk0, sk1;
84 int j;
85
86 kl = skey[(i << 1) + 0];
87 kr = skey[(i << 1) + 1];
88 sk0 = 0;
89 sk1 = 0;
90 for (j = 0; j < 16; j ++) {
91 sk0 <<= 1;
92 sk1 <<= 1;
93 sk0 |= ((kl >> QL0[j]) & (uint32_t)1) << 16;
94 sk0 |= (kr >> QR0[j]) & (uint32_t)1;
95 sk1 |= ((kl >> QL1[j]) & (uint32_t)1) << 16;
96 sk1 |= (kr >> QR1[j]) & (uint32_t)1;
97 }
98
99 skey[(i << 1) + 0] = sk0;
100 skey[(i << 1) + 1] = sk1;
101 }
102
103 #if 0
104 /*
105 * Speed-optimized version for PC-2 + bitslicing.
106 * (Unused. Kept for reference only.)
107 */
108 sk0 = kl & (uint32_t)0x00100000;
109 sk0 |= (kl & (uint32_t)0x08008000) << 2;
110 sk0 |= (kl & (uint32_t)0x00400000) << 4;
111 sk0 |= (kl & (uint32_t)0x00800000) << 5;
112 sk0 |= (kl & (uint32_t)0x00040000) << 6;
113 sk0 |= (kl & (uint32_t)0x00010000) << 7;
114 sk0 |= (kl & (uint32_t)0x00000100) << 10;
115 sk0 |= (kl & (uint32_t)0x00022000) << 14;
116 sk0 |= (kl & (uint32_t)0x00000082) << 18;
117 sk0 |= (kl & (uint32_t)0x00000004) << 19;
118 sk0 |= (kl & (uint32_t)0x04000000) >> 10;
119 sk0 |= (kl & (uint32_t)0x00000010) << 26;
120 sk0 |= (kl & (uint32_t)0x01000000) >> 2;
121
122 sk0 |= kr & (uint32_t)0x00000100;
123 sk0 |= (kr & (uint32_t)0x00000008) << 1;
124 sk0 |= (kr & (uint32_t)0x00000200) << 4;
125 sk0 |= rotl(kr & (uint32_t)0x08000021, 6);
126 sk0 |= (kr & (uint32_t)0x01000000) >> 24;
127 sk0 |= (kr & (uint32_t)0x00000002) << 11;
128 sk0 |= (kr & (uint32_t)0x00100000) >> 18;
129 sk0 |= (kr & (uint32_t)0x00400000) >> 17;
130 sk0 |= (kr & (uint32_t)0x00800000) >> 14;
131 sk0 |= (kr & (uint32_t)0x02020000) >> 10;
132 sk0 |= (kr & (uint32_t)0x00080000) >> 5;
133 sk0 |= (kr & (uint32_t)0x00000040) >> 3;
134 sk0 |= (kr & (uint32_t)0x00000800) >> 1;
135
136 sk1 = kl & (uint32_t)0x02000000;
137 sk1 |= (kl & (uint32_t)0x00001000) << 5;
138 sk1 |= (kl & (uint32_t)0x00000200) << 11;
139 sk1 |= (kl & (uint32_t)0x00004000) << 15;
140 sk1 |= (kl & (uint32_t)0x00000020) << 16;
141 sk1 |= (kl & (uint32_t)0x00000800) << 17;
142 sk1 |= (kl & (uint32_t)0x00000001) << 24;
143 sk1 |= (kl & (uint32_t)0x00200000) >> 5;
144
145 sk1 |= (kr & (uint32_t)0x00000010) << 8;
146 sk1 |= (kr & (uint32_t)0x04000000) >> 17;
147 sk1 |= (kr & (uint32_t)0x00004000) >> 14;
148 sk1 |= (kr & (uint32_t)0x00000400) >> 9;
149 sk1 |= (kr & (uint32_t)0x00010000) >> 8;
150 sk1 |= (kr & (uint32_t)0x00001000) >> 7;
151 sk1 |= (kr & (uint32_t)0x00000080) >> 3;
152 sk1 |= (kr & (uint32_t)0x00008000) >> 2;
153 #endif
154 }
155
156 /* see inner.h */
157 unsigned
158 br_des_ct_keysched(uint32_t *skey, const void *key, size_t key_len)
159 {
160 switch (key_len) {
161 case 8:
162 keysched_unit(skey, key);
163 return 1;
164 case 16:
165 keysched_unit(skey, key);
166 keysched_unit(skey + 32, (const unsigned char *)key + 8);
167 br_des_rev_skey(skey + 32);
168 memcpy(skey + 64, skey, 32 * sizeof *skey);
169 return 3;
170 default:
171 keysched_unit(skey, key);
172 keysched_unit(skey + 32, (const unsigned char *)key + 8);
173 br_des_rev_skey(skey + 32);
174 keysched_unit(skey + 64, (const unsigned char *)key + 16);
175 return 3;
176 }
177 }
178
179 /*
180 * DES confusion function. This function performs expansion E (32 to
181 * 48 bits), XOR with subkey, S-boxes, and permutation P.
182 */
183 static inline uint32_t
184 Fconf(uint32_t r0, const uint32_t *sk)
185 {
186 /*
187 * Each 6->4 S-box is virtually turned into four 6->1 boxes; we
188 * thus end up with 32 boxes that we call "T-boxes" here. We will
189 * evaluate them with bitslice code.
190 *
191 * Each T-box is a circuit of multiplexers (sort of) and thus
192 * takes 70 inputs: the 6 actual T-box inputs, and 64 constants
193 * that describe the T-box output for all combinations of the
194 * 6 inputs. With this model, all T-boxes are identical (with
195 * distinct inputs) and thus can be executed in parallel with
196 * bitslice code.
197 *
198 * T-boxes are numbered from 0 to 31, in least-to-most
199 * significant order. Thus, S-box S1 corresponds to T-boxes 31,
200 * 30, 29 and 28, in that order. T-box 'n' is computed with the
201 * bits at rank 'n' in the 32-bit words.
202 *
203 * Words x0 to x5 contain the T-box inputs 0 to 5.
204 */
205 uint32_t x0, x1, x2, x3, x4, x5, z0;
206 uint32_t y0, y1, y2, y3, y4, y5, y6, y7, y8, y9;
207 uint32_t y10, y11, y12, y13, y14, y15, y16, y17, y18, y19;
208 uint32_t y20, y21, y22, y23, y24, y25, y26, y27, y28, y29;
209 uint32_t y30;
210
211 /*
212 * Spread input bits over the 6 input words x*.
213 */
214 x1 = r0 & (uint32_t)0x11111111;
215 x2 = (r0 >> 1) & (uint32_t)0x11111111;
216 x3 = (r0 >> 2) & (uint32_t)0x11111111;
217 x4 = (r0 >> 3) & (uint32_t)0x11111111;
218 x1 = (x1 << 4) - x1;
219 x2 = (x2 << 4) - x2;
220 x3 = (x3 << 4) - x3;
221 x4 = (x4 << 4) - x4;
222 x0 = (x4 << 4) | (x4 >> 28);
223 x5 = (x1 >> 4) | (x1 << 28);
224
225 /*
226 * XOR with the subkey for this round.
227 */
228 x0 ^= sk[0];
229 x1 ^= sk[1];
230 x2 ^= sk[2];
231 x3 ^= sk[3];
232 x4 ^= sk[4];
233 x5 ^= sk[5];
234
235 /*
236 * The T-boxes are done in parallel, since they all use a
237 * "tree of multiplexer". We use "fake multiplexers":
238 *
239 * y = a ^ (x & b)
240 *
241 * computes y as either 'a' (if x == 0) or 'a ^ b' (if x == 1).
242 */
243 y0 = (uint32_t)0xEFA72C4D ^ (x0 & (uint32_t)0xEC7AC69C);
244 y1 = (uint32_t)0xAEAAEDFF ^ (x0 & (uint32_t)0x500FB821);
245 y2 = (uint32_t)0x37396665 ^ (x0 & (uint32_t)0x40EFA809);
246 y3 = (uint32_t)0x68D7B833 ^ (x0 & (uint32_t)0xA5EC0B28);
247 y4 = (uint32_t)0xC9C755BB ^ (x0 & (uint32_t)0x252CF820);
248 y5 = (uint32_t)0x73FC3606 ^ (x0 & (uint32_t)0x40205801);
249 y6 = (uint32_t)0xA2A0A918 ^ (x0 & (uint32_t)0xE220F929);
250 y7 = (uint32_t)0x8222BD90 ^ (x0 & (uint32_t)0x44A3F9E1);
251 y8 = (uint32_t)0xD6B6AC77 ^ (x0 & (uint32_t)0x794F104A);
252 y9 = (uint32_t)0x3069300C ^ (x0 & (uint32_t)0x026F320B);
253 y10 = (uint32_t)0x6CE0D5CC ^ (x0 & (uint32_t)0x7640B01A);
254 y11 = (uint32_t)0x59A9A22D ^ (x0 & (uint32_t)0x238F1572);
255 y12 = (uint32_t)0xAC6D0BD4 ^ (x0 & (uint32_t)0x7A63C083);
256 y13 = (uint32_t)0x21C83200 ^ (x0 & (uint32_t)0x11CCA000);
257 y14 = (uint32_t)0xA0E62188 ^ (x0 & (uint32_t)0x202F69AA);
258 /* y15 = (uint32_t)0x00000000 ^ (x0 & (uint32_t)0x00000000); */
259 y16 = (uint32_t)0xAF7D655A ^ (x0 & (uint32_t)0x51B33BE9);
260 y17 = (uint32_t)0xF0168AA3 ^ (x0 & (uint32_t)0x3B0FE8AE);
261 y18 = (uint32_t)0x90AA30C6 ^ (x0 & (uint32_t)0x90BF8816);
262 y19 = (uint32_t)0x5AB2750A ^ (x0 & (uint32_t)0x09E34F9B);
263 y20 = (uint32_t)0x5391BE65 ^ (x0 & (uint32_t)0x0103BE88);
264 y21 = (uint32_t)0x93372BAF ^ (x0 & (uint32_t)0x49AC8E25);
265 y22 = (uint32_t)0xF288210C ^ (x0 & (uint32_t)0x922C313D);
266 y23 = (uint32_t)0x920AF5C0 ^ (x0 & (uint32_t)0x70EF31B0);
267 y24 = (uint32_t)0x63D312C0 ^ (x0 & (uint32_t)0x6A707100);
268 y25 = (uint32_t)0x537B3006 ^ (x0 & (uint32_t)0xB97C9011);
269 y26 = (uint32_t)0xA2EFB0A5 ^ (x0 & (uint32_t)0xA320C959);
270 y27 = (uint32_t)0xBC8F96A5 ^ (x0 & (uint32_t)0x6EA0AB4A);
271 y28 = (uint32_t)0xFAD176A5 ^ (x0 & (uint32_t)0x6953DDF8);
272 y29 = (uint32_t)0x665A14A3 ^ (x0 & (uint32_t)0xF74F3E2B);
273 y30 = (uint32_t)0xF2EFF0CC ^ (x0 & (uint32_t)0xF0306CAD);
274 /* y31 = (uint32_t)0x00000000 ^ (x0 & (uint32_t)0x00000000); */
275
276 y0 = y0 ^ (x1 & y1);
277 y1 = y2 ^ (x1 & y3);
278 y2 = y4 ^ (x1 & y5);
279 y3 = y6 ^ (x1 & y7);
280 y4 = y8 ^ (x1 & y9);
281 y5 = y10 ^ (x1 & y11);
282 y6 = y12 ^ (x1 & y13);
283 y7 = y14; /* was: y14 ^ (x1 & y15) */
284 y8 = y16 ^ (x1 & y17);
285 y9 = y18 ^ (x1 & y19);
286 y10 = y20 ^ (x1 & y21);
287 y11 = y22 ^ (x1 & y23);
288 y12 = y24 ^ (x1 & y25);
289 y13 = y26 ^ (x1 & y27);
290 y14 = y28 ^ (x1 & y29);
291 y15 = y30; /* was: y30 ^ (x1 & y31) */
292
293 y0 = y0 ^ (x2 & y1);
294 y1 = y2 ^ (x2 & y3);
295 y2 = y4 ^ (x2 & y5);
296 y3 = y6 ^ (x2 & y7);
297 y4 = y8 ^ (x2 & y9);
298 y5 = y10 ^ (x2 & y11);
299 y6 = y12 ^ (x2 & y13);
300 y7 = y14 ^ (x2 & y15);
301
302 y0 = y0 ^ (x3 & y1);
303 y1 = y2 ^ (x3 & y3);
304 y2 = y4 ^ (x3 & y5);
305 y3 = y6 ^ (x3 & y7);
306
307 y0 = y0 ^ (x4 & y1);
308 y1 = y2 ^ (x4 & y3);
309
310 y0 = y0 ^ (x5 & y1);
311
312 /*
313 * The P permutation:
314 * -- Each bit move is converted into a mask + left rotation.
315 * -- Rotations that use the same movement are coalesced together.
316 * -- Left and right shifts are used as alternatives to a rotation
317 * where appropriate (this will help architectures that do not have
318 * a rotation opcode).
319 */
320 z0 = (y0 & (uint32_t)0x00000004) << 3;
321 z0 |= (y0 & (uint32_t)0x00004000) << 4;
322 z0 |= rotl(y0 & 0x12020120, 5);
323 z0 |= (y0 & (uint32_t)0x00100000) << 6;
324 z0 |= (y0 & (uint32_t)0x00008000) << 9;
325 z0 |= (y0 & (uint32_t)0x04000000) >> 22;
326 z0 |= (y0 & (uint32_t)0x00000001) << 11;
327 z0 |= rotl(y0 & 0x20000200, 12);
328 z0 |= (y0 & (uint32_t)0x00200000) >> 19;
329 z0 |= (y0 & (uint32_t)0x00000040) << 14;
330 z0 |= (y0 & (uint32_t)0x00010000) << 15;
331 z0 |= (y0 & (uint32_t)0x00000002) << 16;
332 z0 |= rotl(y0 & 0x40801800, 17);
333 z0 |= (y0 & (uint32_t)0x00080000) >> 13;
334 z0 |= (y0 & (uint32_t)0x00000010) << 21;
335 z0 |= (y0 & (uint32_t)0x01000000) >> 10;
336 z0 |= rotl(y0 & 0x88000008, 24);
337 z0 |= (y0 & (uint32_t)0x00000480) >> 7;
338 z0 |= (y0 & (uint32_t)0x00442000) >> 6;
339 return z0;
340 }
341
342 /*
343 * Process one block through 16 successive rounds, omitting the swap
344 * in the final round.
345 */
346 static void
347 process_block_unit(uint32_t *pl, uint32_t *pr, const uint32_t *sk_exp)
348 {
349 int i;
350 uint32_t l, r;
351
352 l = *pl;
353 r = *pr;
354 for (i = 0; i < 16; i ++) {
355 uint32_t t;
356
357 t = l ^ Fconf(r, sk_exp);
358 l = r;
359 r = t;
360 sk_exp += 6;
361 }
362 *pl = r;
363 *pr = l;
364 }
365
366 /* see inner.h */
367 void
368 br_des_ct_process_block(unsigned num_rounds,
369 const uint32_t *sk_exp, void *block)
370 {
371 unsigned char *buf;
372 uint32_t l, r;
373
374 buf = block;
375 l = br_dec32be(buf);
376 r = br_dec32be(buf + 4);
377 br_des_do_IP(&l, &r);
378 while (num_rounds -- > 0) {
379 process_block_unit(&l, &r, sk_exp);
380 sk_exp += 96;
381 }
382 br_des_do_invIP(&l, &r);
383 br_enc32be(buf, l);
384 br_enc32be(buf + 4, r);
385 }
386
387 /* see inner.h */
388 void
389 br_des_ct_skey_expand(uint32_t *sk_exp,
390 unsigned num_rounds, const uint32_t *skey)
391 {
392 num_rounds <<= 4;
393 while (num_rounds -- > 0) {
394 uint32_t v, w0, w1, w2, w3;
395
396 v = *skey ++;
397 w0 = v & 0x11111111;
398 w1 = (v >> 1) & 0x11111111;
399 w2 = (v >> 2) & 0x11111111;
400 w3 = (v >> 3) & 0x11111111;
401 *sk_exp ++ = (w0 << 4) - w0;
402 *sk_exp ++ = (w1 << 4) - w1;
403 *sk_exp ++ = (w2 << 4) - w2;
404 *sk_exp ++ = (w3 << 4) - w3;
405 v = *skey ++;
406 w0 = v & 0x11111111;
407 w1 = (v >> 1) & 0x11111111;
408 *sk_exp ++ = (w0 << 4) - w0;
409 *sk_exp ++ = (w1 << 4) - w1;
410 }
411 }